1887

Abstract

A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain (MSL86) isolated from an estuarine sediment in the Sea of Japan (around the Japanese islands) was characterized phenotypically and phylogenetically. The cells were found to be Gram-negative, motile, non-spore-forming rods. Catalase was not detected. The optimum NaCl concentration for growth was 1.0 % (w/v) and the optimum temperature was 35 °C. Strain MSL86 was slightly alkaliphilic, with optimum growth at pH 7.5–7.6. Organic electron donors were incompletely oxidized to (mainly) acetate. Strain MSL86 utilized formate, pyruvate, lactate, fumarate, ethanol, propanol, butanol and glycerol as electron donors for sulfate reduction and did not use acetate, propionate, butyrate, succinate, malate, methanol, glycine, alanine, serine, aspartate, glutamate or H. Sulfite, thiosulfate and fumarate were used as electron acceptors with lactate as an electron donor. Without electron acceptors, the strain fermented pyruvate and fumarate. The genomic DNA G+C content was 54.4 mol%. Menaquinone MK-8(H) was the major respiratory quinone. The major cellular fatty acids were C, C 7, C 5 and C 6. A phylogenetic analysis based on the 16S rRNA gene sequence placed the strain in the class . The recognized bacterium most closely related to strain MSL86 was [] DSM 3882 (sequence similarity 94.4 %), and the next most closely related recognized species were (94.2 % sequence similarity with the type strain) and (93.7 %). As the physiological and chemotaxonomic characteristics of MSL86 were distinctly different from those of any related species, a novel genus and species gen. nov., sp. nov. are proposed to accommodate the strain. The type strain of is MSL86 (=JCM 14042=DSM 18488).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64600-0
2007-03-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/3/520.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64600-0&mimeType=html&fmt=ahah

References

  1. Akasaka, H., Izawa, T., Ueki, K. & Ueki, A. ( 2003a; ). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43, 149–161.[CrossRef]
    [Google Scholar]
  2. Akasaka, H., Ueki, A., Hanada, S., Kamagata, Y. & Ueki, K. ( 2003b; ). Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 53, 1991–1998.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  4. Audiffrin, C., Cayol, J.-L., Joulian, C., Casalot, L., Thomas, P., Garcia, J.-L. & Ollivier, B. ( 2003; ). Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53, 1585–1590.[CrossRef]
    [Google Scholar]
  5. Blenden, D. C. & Goldberg, H. S. ( 1965; ). Silver impregnation stain for Leptospira and flagella. J Bacteriol 89, 899–900.
    [Google Scholar]
  6. Castro, H. F., Williams, N. H. & Ogram, A. ( 2000; ). Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31, 1–9.
    [Google Scholar]
  7. Cravo-Laureau, C., Matheron, R., Cayol, J.-L., Joulian, C. & Hirschler-Réa, A. ( 2004; ). Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54, 77–83.[CrossRef]
    [Google Scholar]
  8. Devereux, R. & Mundfrom, G. W. ( 1994; ). A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol 60, 3437–3439.
    [Google Scholar]
  9. Dhillon, A., Teske, A., Dillon, J., Stahl, D. A. & Sogin, M. L. ( 2003; ). Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69, 2765–2772.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 2006; ). phylip (phylogeny inference package), version 3.66. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Hungate, R. E. ( 1966; ). The Rumen and its Microbes. New York: Academic Press.
  12. Jeanthon, C., L'Haridon, S., Cueff, V., Banta, A., Reysenbach, A.-L. & Prieur, D. ( 2002; ). Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52, 765–772.[CrossRef]
    [Google Scholar]
  13. Jørgensen, B. B. ( 1982; ). Mineralization of organic matter in the sea bed – the role of sulphate reduction. Nature 296, 643–645.[CrossRef]
    [Google Scholar]
  14. Joulian, C., Ramsing, N. B. & Ingvorsen, K. ( 2001; ). Congruent phylogenies of most common small-subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 67, 3314–3318.[CrossRef]
    [Google Scholar]
  15. Kamagata, Y. & Mikami, E. ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef]
    [Google Scholar]
  16. Klein, M., Friedrich, M., Roger, A. J., Hugenholtz, P., Fishbain, S., Abicht, H., Blackall, L. L., Stahl, D. A. & Wagner, M. ( 2001; ). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183, 6028–6035.[CrossRef]
    [Google Scholar]
  17. Knoblauch, C., Sahm, K. & Jørgensen, B. B. ( 1999; ). Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments, description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49, 1631–1643.[CrossRef]
    [Google Scholar]
  18. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  19. Kuever, J., Rainey, F. A. & Widdel, F. ( 2005; ). Class IV. Deltaproteobacteria class nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part C, p. 922. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  20. Leloup, J., Quillet, L., Berthe, T. & Petit, F. ( 2006; ). Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol Ecol 55, 230–238.[CrossRef]
    [Google Scholar]
  21. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  22. Miyagawa, E., Azuma, R. & Suto, E. ( 1979; ). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25, 41–51.[CrossRef]
    [Google Scholar]
  23. Moore, L. V. H., Bourne, D. M. & Moore, W. E. C. ( 1994; ). Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol 44, 338–347.[CrossRef]
    [Google Scholar]
  24. Moussard, H., L'Haridon, S., Tindall, B. J., Banta, A., Schumann, P., Stackebrandt, E., Reysenbach, A.-L. & Jeanthon, C. ( 2004; ). Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54, 227–233.[CrossRef]
    [Google Scholar]
  25. Nakamoto, M., Ueki, A. & Ueki, K. ( 1996; ). Physiological properties of a sulfate-reducing bacterium isolated from municipal sewage sludge and its possible role as a syntrophic acidogen in the ecosystem. J Gen Appl Microbiol 42, 109–120.[CrossRef]
    [Google Scholar]
  26. Purdy, K. J., Embley, T. M. & Nedwell, D. B. ( 2002; ). The distribution and activity of sulphate reducing bacteria in estuarine and coastal marine sediments. Antonie van Leeuwenhoek 81, 181–187.[CrossRef]
    [Google Scholar]
  27. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  28. Sass, A., Rütters, H., Cypionka, H. & Sass, H. ( 2002; ). Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177, 468–474.[CrossRef]
    [Google Scholar]
  29. Szewzyk, R. & Pfennig, N. ( 1987; ). Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147, 163–168.[CrossRef]
    [Google Scholar]
  30. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  31. Ueki, A. & Suto, T. ( 1979; ). Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25, 185–196.[CrossRef]
    [Google Scholar]
  32. Ueki, A., Minato, H., Azuma, R. & Suto, T. ( 1980; ). Enumeration and isolation of anaerobic bacteria in sewage digester fluids: enumeration of sulfate-reducers by the anaerobic roll tube method. J Gen Appl Microbiol 26, 25–35.[CrossRef]
    [Google Scholar]
  33. Ueki, A., Matsuda, K. & Ohtsuki, C. ( 1986; ). Sulfate reduction in the anaerobic digestion of animal waste. J Gen Appl Microbiol 32, 111–123.[CrossRef]
    [Google Scholar]
  34. Voordouw, G., Armstrong, S. M., Reimer, M. F., Fouts, B., Telang, A. J., Shen, Y. & Gevertz, D. ( 1996; ). Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62, 1623–1629.
    [Google Scholar]
  35. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. ( 1998; ). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982.
    [Google Scholar]
  36. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64600-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64600-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error