1887

Abstract

A novel moderately halophilic bacterium, strain G-19.1, has been isolated from a phenol enrichment of samples collected in hypersaline habitats of southern Spain. This enrichment culture was a part of a screening programme to isolate halophilic bacteria able to degrade various aromatic compounds. Strain G-19.1 has been characterized as a potential phenol-degrader over a wide range of saline conditions. Strain G-19.1 was found to be an aerobic, Gram-positive, endospore-forming, non-pigmented, moderately halophilic rod that grew optimally in media containing 7·5–10 % NaCl at pH 7·0. The DNA G+C content was 42·4 mol%. Phylogenetic analysis based on comparison of 16S rRNA gene sequences indicated that the closest relatives were species (96·2–97·0 %), although this novel isolate constitutes a separate line of descent within the radiation of Gram-positive rods. The cell-wall peptidoglycan contained -diaminopimelic acid, indicating that this strain does not share the main characteristic that differentiates members of the genus (which contain Orn–-Asp) from other related genera. The predominant cellular fatty acids were anteiso-C, iso-C and iso-C. On the basis of phenotypic, genotypic and phylogenetic analyses, this isolate should be classified in a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is strain G-19.1 (=DSM 16966=CECT 7046=CCM 7282).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63560-0
2005-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551789.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63560-0&mimeType=html&fmt=ahah

References

  1. Adkins, J. P., Madigan, M. T., Mandelco, L., Woese, C. R. & Tanner, R. S. ( 1993; ). Arhodomonas aquaeolei gen. nov., sp. nov., an aerobic, halophilic bacterium isolated from a subterranean brine. Int J Syst Bacteriol 43, 514–520.[CrossRef]
    [Google Scholar]
  2. Alva, V. A. & Peyton, B. M. ( 2003; ). Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37, 4397–4402.[CrossRef]
    [Google Scholar]
  3. Amoozegar, M. A., Malekzadeh, F., Malik, K. A., Schumann, P. & Spröer, C. ( 2003; ). Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53, 1059–1063.[CrossRef]
    [Google Scholar]
  4. Arahal, D. R. & Ventosa, A. ( 2000; ). Moderately halophilic and halotolerant species of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives, pp. 83–99. Edited by R. Berkeley, M. Heyndrickx, N. Logan & P. De Vos. Oxford: Blackwell.
  5. Arrault, S., Desaint, S., Catroux, C., Semon, E., Mougin, C. & Fournier, J. C. ( 2002; ). Isolation and characterization of efficient isoxaben-transforming Microbacterium sp. strains from four European soils. Pest Manag Sci 58, 1229–1235.[CrossRef]
    [Google Scholar]
  6. Briglia, M., Rainey, F. A., Stackebrandt, E., Schraa, G. & Salkinoja-Salonen, M. S. ( 1996; ). Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int J Syst Bacteriol 46, 23–30.[CrossRef]
    [Google Scholar]
  7. Claus, D., Fahmy, F., Rolf, H. J. & Tosunoglu, N. ( 1983; ). Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4, 496–506.[CrossRef]
    [Google Scholar]
  8. Cohen, G. N. & Rickenberg, R. H. ( 1956; ). Concentration specifique reversible des amino acides chez E. coli. Ann Inst Pasteur 91, 693–720 (in French).
    [Google Scholar]
  9. Eck, R. & Belter, J. ( 1993; ). Cloning and characterization of a gene coding for the catechol 1,2-dioxygenase of Arthrobacter sp. mA3. Gene 123, 87–92.[CrossRef]
    [Google Scholar]
  10. Eulberg, D., Golovleva, L. A. & Schlömann, M. ( 1997; ). Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol 179, 370–381.
    [Google Scholar]
  11. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  12. Fritze, D. ( 1996; ). Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46, 98–101.[CrossRef]
    [Google Scholar]
  13. García, M. T., Ventosa, A., Ruiz-Berraquero, F. & Kocur, M. ( 1987; ). Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 37, 251–256.[CrossRef]
    [Google Scholar]
  14. García, M. T., Mellado, E., Ostos, J. C. & Ventosa, A. ( 2004; ). Halomonas organivorans sp. nov., a novel moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54, 1723–1728.[CrossRef]
    [Google Scholar]
  15. Gauthier, E., Deziel, E., Villemur, R., Juteau, P., Lepine, F. & Beaudet, R. ( 2003; ). Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. J Appl Microbiol 94, 301–311.[CrossRef]
    [Google Scholar]
  16. Grund, E., Denecke, B. & Eichenlaub, R. ( 1992; ). Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol 58, 1874–1877.
    [Google Scholar]
  17. Hedlund, B. P., Geiselbrecht, A. D. & Staley, J. T. ( 2001; ). Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiol Lett 201, 47–51.[CrossRef]
    [Google Scholar]
  18. Heyndrickx, M., Lebbe, L., Kersters, K., Hoste, B., De Wachter, R., De Vos, P., Forsyth, G. & Logan, N. A. ( 1999; ). Proposal of Virgibacillus proomii sp. nov. and emended description of Virgibacillus pantothenticus (Proom and Knight 1950) Heyndrickx et al. 1998. Int J Syst Bacteriol 49, 1083–1090.[CrossRef]
    [Google Scholar]
  19. Heyrman, J., Logan, N. A., Busse, H. J., Balcaen, A., Lebbe, L., Rodriguez-Diaz, M., Swings, J. & De Vos, P. ( 2003; ). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53, 501–511.[CrossRef]
    [Google Scholar]
  20. Huu, N. B., Denner, E. B., Ha, D. T., Wanner, G. & Stan-Lotter, H. ( 1999; ). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49, 367–375.[CrossRef]
    [Google Scholar]
  21. Jeon, C. O., Lim, J.-M., Lee, J.-C., Lee, G. S., Lee, J.-M., Xu, L.-H., Jiang, C.-L. & Kim, C.-J. ( 2005; ). Lentibacillus salarius sp. nov, isolated from saline sediment in China, and emended description of the genus Lentibacillus. Int J Syst Evol Microbiol 55, 1339–1343.[CrossRef]
    [Google Scholar]
  22. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  23. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  24. Lim, J.-M., Jeon, C. O., Song, S. M. & Kim, C.-J. ( 2005a; ). Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 55, 165–170.[CrossRef]
    [Google Scholar]
  25. Lim, J.-M., Jeon, C. O., Park, D.-J., Kim, H.-R., Yoon, B.-J. & Kim, C.-J. ( 2005b; ). Pontibacillus marinus sp. nov, a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus. Int J Syst Evol Microbiol 55, 1027–1031.[CrossRef]
    [Google Scholar]
  26. Ludwig, W. & Strunk, O. ( 1996; ). arb – a software environment for sequence data. http://www.arb-home.de/
  27. Margesin, R. & Schinner, F. ( 2001; ). Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56, 650–663.[CrossRef]
    [Google Scholar]
  28. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  29. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  30. Mellado, E. & Ventosa, A. ( 2003; ). Biotechnological potential of moderately and extremely halophilic microorganisms. In Microorganisms for Health Care, Food and Enzyme Production, pp. 233–256. Edited by J. L. Barredo. Kerala: Research Signpost.
  31. Mellado, E., Moore, E. R. B., Nieto, J. J. & Ventosa, A. ( 1995; ). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina, and reclassification of V. eurihalina as Halomonas eurihalina comb. nov. Int J Syst Bacteriol 45, 712–716.[CrossRef]
    [Google Scholar]
  32. Mormile, M. R., Romine, M. F., García, M. T., Ventosa, A., Bailey, T. J. & Peyton, B. M. ( 1999; ). Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22, 551–558.[CrossRef]
    [Google Scholar]
  33. Muñoz, J. A., Perez-Esteban, B., Esteban, M., de la Escalera, S., Gomez, M. A., Martínez-Toledo, M. V. & Gonzalez-Lopez, J. ( 2001; ). Growth of moderately halophilic bacteria isolated from sea water using phenol as the sole carbon source. Folia Microbiol 46, 297–302.[CrossRef]
    [Google Scholar]
  34. Namwong, S., Tanasupawat, S., Smitinont, T., Visessanguan, W., Kudo, T. & Itoh, T. ( 2005; ). Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int J Syst Evol Microbiol 55, 315–320.[CrossRef]
    [Google Scholar]
  35. Nicholson, C. A. & Fathepure, B. Z. ( 2004; ). Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70, 1222–1225.[CrossRef]
    [Google Scholar]
  36. Nieto, J. J., Fernandez-Castillo, R., Marquez, M. C., Ventosa, A., Quesada, E. & Ruiz-Berraquero, F. ( 1989; ). Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55, 2385–2390.
    [Google Scholar]
  37. Oren, A., Gurevich, P., Azachi, M. & Henis, Y. ( 1992; ). Microbial degradation of pollutants at high salt concentrations. Biodegradation 3, 387–398.[CrossRef]
    [Google Scholar]
  38. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn, pp. 217–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  39. Quesada, E., Ventosa, A., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1984; ). Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 40, 261–267.
    [Google Scholar]
  40. Rast, H. G., Engelhardt, G. & Wallnoefer, P. R. ( 1980; ). Degradation of aromatic compounds in the actinomycete genus Rhodococcus. FEMS Microbiol Lett 7, 1–7.[CrossRef]
    [Google Scholar]
  41. Ren, P. G. & Zhou, P. J. ( 2005; ). Tenuibacillus multivorans gen. nov., sp. nov., a moderately halophilic bacterium isolated from saline soil in Xin-Jiang, China. Int J Syst Evol Microbiol 55, 95–99.[CrossRef]
    [Google Scholar]
  42. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  43. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  44. Schlesner, H., Lawson, P. A., Collins, M. D., Weiss, N., Wehmeyer, U., Volker, H. & Thomm, M. ( 2001; ). Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-d-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51, 425–431.
    [Google Scholar]
  45. Slepecky, R. A. & Hemphill, H. E. ( 1991; ). The genus Bacillus – non-medical. In The Prokaryotes, pp. 1663–1696. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  46. Spring, S., Ludwig, W., Marquez, M. C., Ventosa, A. & Schleifer, K. H. ( 1996; ). Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46, 492–496.[CrossRef]
    [Google Scholar]
  47. Ventosa, A., Quesada, E., Rodríguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  48. Ventosa, A., Ramos-Cormenzana, A. & Kocur, M. ( 1983; ). Moderately halophilic Gram-positive cocci from hypersaline environments. Syst Appl Microbiol 4, 564–570.[CrossRef]
    [Google Scholar]
  49. Ventosa, A., Nieto, J. J. & Oren, A. ( 1998; ). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544.
    [Google Scholar]
  50. Wainø, M., Tindall, B. J., Schumann, P. & Ingvorsen, K. ( 1999; ). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49, 821–831.[CrossRef]
    [Google Scholar]
  51. Westerberg, K., Elvang, A. M., Stackebrandt, E. & Jansson, J. K. ( 2000; ). Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50, 2083–2092.[CrossRef]
    [Google Scholar]
  52. Yoon, J.-H., Cho, Y.-G., Kang, S.-S., Kim, S. B., Lee, S. T. & Park, Y.-H. ( 2000a; ). Rhodococcus koreensis sp. nov. a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50, 1193–1201.[CrossRef]
    [Google Scholar]
  53. Yoon, J.-H., Kang, S.-S., Cho, Y.-G., Lee, S. T., Kho, Y. H., Kim, C.-J. & Park, Y.-H. ( 2000b; ). Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. Int J Syst Evol Microbiol 50, 2173–2180.[CrossRef]
    [Google Scholar]
  54. Yoon, J. H., Weiss, N., Lee, K. C., Lee, I. S., Kang, K. H. & Park, Y. H. ( 2001; ). Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 2087–2093.[CrossRef]
    [Google Scholar]
  55. Yoon, J. H., Kang, K. H. & Park, Y. H. ( 2002; ). Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52, 2043–2048.[CrossRef]
    [Google Scholar]
  56. Yoon, J. H., Kang, K. H. & Park, Y. H. ( 2003; ). Halobacillus salinus sp. nov., isolated from a salt lake on the coast of the East Sea in Korea. Int J Syst Evol Microbiol 53, 687–693.[CrossRef]
    [Google Scholar]
  57. Yoon, J. H., Kang, K. H., Oh, T. K. & Park, Y. H. ( 2004; ). Halobacillus locisalis sp. nov., a halophilic bacterium isolated from a marine solar saltern of the Yellow Sea in Korea. Extremophiles 8, 23–28.[CrossRef]
    [Google Scholar]
  58. Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K. & Suemori, A. ( 2003; ). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53, 1531–1536.[CrossRef]
    [Google Scholar]
  59. Zhuang, W. Q., Zhuang, W. Q., Maszenan, A. M. & Tay, S. T. ( 2002; ). Bacillus naphthovorans sp. nov. from oil-contaminated tropical marine sediments and its role in naphthalene biodegradation. Appl Microbiol Biotechnol 58, 547–553.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63560-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63560-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1789 - 1795

Maximum-likelihood tree (Fig. S1) and maximum-parsimony tree (Fig. S2) based on 16S rRNA gene sequence comparison, showing the phylogenetic position of G-19.1 among representatives of some other related Gram-positive bacteria.

[Single PDF file](19 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error