1887

Abstract

Polyvinyl-alcohol-degrading bacteria were isolated from the fruit of a grape in Yokosuka, Japan. The isolated strain, Zumi 37, was a Gram-stain-negative, rod-shaped, motile, non-spore-forming and strictly aerobic chemo-organotroph, showing optimal growth at pH 7.5, 30 °C and 0.1 % (w/v) NaCl. The major respiratory quinone was Q-8. The predominant fatty acids were iso-C, C and Cω7. The major polyamines were homospermidine and putrescine. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of the novel strain was 64.2 mol%. 16S rRNA gene sequence comparison revealed that strain Zumi 37 belongs to the family within the class . DSM 18526 was the most closely related species with a validly published name, with 98.0 % similarity based on 16S rRNA gene sequence comparison (and showed less than 87.5 % sequence similarity to members of the genera , , , and with known 16S rRNA gene sequences). Phenotypes for growth under aerobic conditions and on complex media and major fatty acid composition, differed greatly from those of with comparatively high 16S rRNA gene sequence similarity. Based on phylogenetic, phenotypic and chemotaxonomic evidence, it is proposed that strain Zumi 37 represents a novel species in a new genus for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is Zumi 37 ( = JCM 18749 = DSM 26723).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062620-0
2014-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2712.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062620-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I. , Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. New York:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Fahrbach M., Kuever J., Remesch M., Huber B. E., Kämpfer P., Dott W., Hollender J.. ( 2008;). Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. . Int J Syst Evol Microbiol 58:, 2215–2223. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Finley J. H.. ( 1961;). Spectrophotometric determination of polyvinyl alcohol in paper coatings. . Anal Chem 33:, 1925–1927. [CrossRef]
    [Google Scholar]
  6. Hamana K., Takeuchi M.. ( 1998;). Polyamine profiles as chemotaxonomic marker within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria: distribution of 2- hydroxyputrescine and homospermidine. . Microbiol Cult Collect 14:, 1–14.
    [Google Scholar]
  7. Hamana K., Sakane T., Yokota A.. ( 1994;). A polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirillum. . J Gen Appl Microbiol 40:, 75–82. [CrossRef]
    [Google Scholar]
  8. Hamana K., Okada M., Saito T., Nogi Y.. ( 2000;). Polyamine distribution profiles among some members of the gamma subclass of the class Proteobacteria. . Microbiol Cult Collect 16:, 51–61.
    [Google Scholar]
  9. Hamana K., Sato W., Gouma K., Yu J., Ino Y., Umemura Y., Mochizuki C., Takatsuka K., Kigure Y.. & other authors ( 2007;). Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria. . Ann Gunma Health Sci 27:, 1–16.
    [Google Scholar]
  10. Hu X., Mamoto R., Shimomura Y., Kimbara K., Kawai F.. ( 2007;). Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. . Arch Microbiol 188:, 235–241. [CrossRef][PubMed]
    [Google Scholar]
  11. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  12. Kawai F., Hu X.. ( 2009;). Biochemistry of microbial polyvinyl alcohol degradation. . Appl Microbiol Biotechnol 84:, 227–237. [CrossRef][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  14. Liu Y., Song X. F., Jiang J. T., Liu Y. H., Xu C. J., Li H., Liu Z. P.. ( 2011;). Hydrocarboniphaga daqingensis sp. nov., isolated from a freshwater lake. . Int J Syst Evol Microbiol 61:, 408–411. [CrossRef][PubMed]
    [Google Scholar]
  15. Losey N. A., Stevenson B. S., Verbarg S., Rudd S., Moore E. R. B., Lawson P. A.. ( 2013;). Fontimonas thermophila gen. nov., sp. nov., a moderately thermophilic bacterium isolated from a freshwater hot spring, and proposal of Solimonadaceae fam. nov. to replace Sinobacteraceae Zhou et al. 2008. . Int J Syst Evol Microbiol 63:, 254–259. [CrossRef][PubMed]
    [Google Scholar]
  16. MIDI ( 1999;). Sherlock, Microbial Identification System, Operating Manual, version 3.0. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  17. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  18. Nogi Y., Takami H., Horikoshi K.. ( 2005;). Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. . Int J Syst Evol Microbiol 55:, 2309–2315. [CrossRef][PubMed]
    [Google Scholar]
  19. Palleroni N. J., Port A. M., Chang H. K., Zylstra G. J.. ( 2004;). Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. . Int J Syst Evol Microbiol 54:, 1203–1207. [CrossRef][PubMed]
    [Google Scholar]
  20. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  21. Sheu S.-Y., Cho N.-T., Arun A. B., Chen W. M.. ( 2011;). Proposal of Solimonas aquatica sp. nov., reclassification of Sinobacter flavus Zhou et al. 2008 as Solimonas flava comb. nov. and Singularimonas variicoloris Friedrich and Lipski 2008 as Solimonas variicoloris comb. nov. and emended descriptions of the genus Solimonas and its type species Solimonas soli. . Int J Syst Evol Microbiol 61:, 2284–2291. [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA-base composition by reversed-phase high-performance liquid-chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  26. Uchida H., Hamana K., Miyazaki M., Yoshida T., Nogi Y.. ( 2012;). Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. . Int J Syst Evol Microbiol 62:, 2224–2228. [CrossRef][PubMed]
    [Google Scholar]
  27. Zhao B., Wang H., Mao X., Li R.. ( 2009;). Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. . Curr Microbiol 58:, 205–210. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062620-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062620-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error