1887

Abstract

A novel aerobic, halotolerant bacterium, designated strain LAM612, was isolated from saline-alkaline soil samples from Lingxian County, Shandong Province, China. Cells of strain LAM612 were Gram-reaction-positive, endospore-forming, motile and rod-shaped. The optimal temperature and pH for growth were 35 °C and pH 6.0, respectively. Strain LAM612 could grow in the presence of up to 10 % (w/v) NaCl. The genomic DNA G+C conten was 36.4 mol% as detected by the method. Comparative analysis of 16S rRNA gene sequences revealed that LAM612 was closely related to KACC 16611 (98.0 %), KACC 16626 (97.5 %), KCTC 13178 (97.4 %), KACC 15113 (97.2 %), DSM 54 (97.0 %) and DSM 26584 (96.5 %). The DNA–DNA hybridization values between strain LAM612 and its closest relatives ranged from 20.6 % to 41.9 %. The major fatty acids of strain LAM612 were iso-C (40.8 %), iso-C (15.2 %) and anteiso-C (10.8 %). The cell-wall peptidoglycan content was A4α (-Lys–-Asp). The predominant menaquinone was MK-7 and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, five unknown glycolipids and an unknown lipid. Based on the DNA–DNA hybridization results and phenotypic, phylogenetic and chemotaxonomic properties, strain LAM612 could be distinguished from the recognized species of the genus , and was suggested to represent a novel species of this genus, for which the name sp. nov. is proposed. The type strain is LAM612 ( = ACCC 00718 = JCM 19611).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061465-0
2014-08-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2593.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061465-0&mimeType=html&fmt=ahah

References

  1. Ahmed I. , Yokota A. , Yamazoe A. , Fujiwara T. . ( 2007; ). Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov.. Int J Syst Evol Microbiol 57:, 1117–1125. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chang Y. H. , Han J. I. , Chun J. , Lee K. C. , Rhee M. S. , Kim Y. B. , Bae K. S. . ( 2002; ). Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. . Int J Syst Evol Microbiol 52:, 377–381.[PubMed]
    [Google Scholar]
  3. Chang Y.-H. , Jung M. Y. , Park I.-S. , Oh H.-M. . ( 2008; ). Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. . Int J Syst Evol Microbiol 58:, 2316–2320. [CrossRef]
    [Google Scholar]
  4. Coorevits A. , Dinsdale A. E. , Heyrman J. , Schumann P. , Van Landschoot A. , Logan N. A. , De Vos P. . ( 2012; ). Lysinibacillus macroides sp. nov., nom. rev.. Int J Syst Evol Microbiol 62:, 1121–1127. [CrossRef] [PubMed]
    [Google Scholar]
  5. Duan Y.-Q. , He S.-T. , Li Q.-Q. , Wang M.-F. , Wang W.-Y. , Zhe W. , Cao Y.-H. , Mo M.-H. , Zhai Y.-L. , Li W.-J. . ( 2013; ). Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. . J Microbiol 51:, 289–294. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Guindon S. , Dufayard J. F. , Lefort V. , Anisimova M. , Hordijk W. , Gascuel O. . ( 2010; ). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef] [PubMed]
    [Google Scholar]
  9. Jung M. Y. , Kim J.-S. , Paek W. K. , Styrak I. , Park I.-S. , Sin Y. , Paek J. , Park K. A. , Kim H. . & other authors ( 2012; ). Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to the genus Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus Lysinibacillus. . Int J Syst Evol Microbiol 62:, 2347–2355. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kämpfer P. , Martin K. , Glaeser S. P. . ( 2013; ). Lysinibacillus contaminans sp. nov., isolated from surface water. . Int J Syst Evol Microbiol 63:, 3148–3153. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim S.-J. , Jang Y.-H. , Hamada M. , Ahn J.-H. , Weon H.-Y. , Suzuki K. , Whang K.-S. , Kwon S.-W. . ( 2013; ). Lysinibacillus chungkukjangi sp. nov., isolated from Chungkukjang, Korean fermented soybean food. . J Microbiol 51:, 400–404. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lee C. S. , Jung Y.-T. , Park S. , Oh T.-K. , Yoon J.-H. . ( 2010; ). Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. . Int J Syst Evol Microbiol 60:, 281–286. [CrossRef] [PubMed]
    [Google Scholar]
  15. Liu H. , Song Y. , Chen F. , Zheng S. , Wang G. . ( 2013; ). Lysinibacillus manganicus sp. nov., isolated from manganese mining soil. . Int J Syst Evol Microbiol 63:, 3568–3573. [CrossRef] [PubMed]
    [Google Scholar]
  16. MacKenzie S. L. . ( 1987; ). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. . J Assoc Off Anal Chem 70:, 151–160.[PubMed]
    [Google Scholar]
  17. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  18. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  19. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  20. Miwa H. , Ahmed I. , Yokota A. , Fujiwara T. . ( 2009; ). Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. . Int J Syst Evol Microbiol 59:, 1427–1432. [CrossRef] [PubMed]
    [Google Scholar]
  21. Ruan Z. , Wang Y. , Song J. , Jiang S. , Wang H. , Li Y. , Zhao B. , Jiang R. , Zhao B. . ( 2014; ). Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia . . Int J Syst Evol Microbiol 64:, 518–521. [CrossRef] [PubMed]
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Schleifer K. H. . ( 1985; ). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  24. Seiler H. , Scherer S. , Wenning M. . ( 2013; ). Lysinibacillus meyeri sp. nov., isolated from a medical practice. . Int J Syst Evol Microbiol 63:, 1512–1518. [CrossRef] [PubMed]
    [Google Scholar]
  25. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  27. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tindall B. J. . ( 1990; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  29. Xu X.-W. , Huo Y.-Y. , Wang C.-S. , Oren A. , Cui H.-L. , Vedler E. , Wu M. . ( 2011; ). Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae . . Int J Syst Evol Microbiol 61:, 1817–1822. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yang L. L. , Huang Y. , Liu J. , Ma L. , Mo M. H. , Li W. J. , Yang F. X. . ( 2012; ). Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. . Antonie van Leeuwenhoek 102:, 53–59. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061465-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061465-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error