1887

Abstract

Three strains, LMG 27748, LMG 27749 and LMG 27882 with identical MALDI-TOF mass spectra were isolated from samples taken from the brewery environment. Analysis of the 16S rRNA gene sequence of strain LMG 27748 revealed that the taxon it represents was closely related to type strains of the species (100 % sequence similarity), (99.9 %), (99.9 %) and (99.5 %). DNA–DNA hybridization experiments on the type strains of these species revealed moderate DNA relatedness values (39–65 %). The three strains used -fructose, -sorbitol, -erythritol, glycerol, -sorbose, ethanol (weakly), sucrose and raffinose as a sole carbon source for growth (weak growth on the latter two carbon sources was obtained for strains LMG 27748 and LMG 27882). The strains were unable to grow on glucose-yeast extract medium at 37 °C. They produced acid from -erythritol and sucrose, but not from raffinose. -Gluconic acid, 2-keto--gluconic acid and 5-keto--gluconic acid were produced from -glucose, but not 2,5-diketo--gluconic acid. These genotypic and phenotypic characteristics distinguish strains LMG 27748, LMG 27749 and LMG 27882 from species of the genus with validly published names and, therefore, we propose classifying them formally as representatives of a novel species, sp. nov., with LMG 27748 ( = DSM 27644) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059311-0
2014-04-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1134.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059311-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Andrés-Barrao C., Benagli C., Chappuis M., Ortega Pérez R., Tonolla M., Barja F.. ( 2013;). Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. . Syst Appl Microbiol 36:, 75–81. [CrossRef][PubMed]
    [Google Scholar]
  3. Asai T., Iizuka H., Komagata K.. ( 1964;). Flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to existence of intermediate strains. . J Gen Appl Microbiol 10:, 95–126. [CrossRef]
    [Google Scholar]
  4. Bokulich N. A., Bamforth C. W.. ( 2013;). The microbiology of malting and brewing. . Microbiol Mol Biol Rev 77:, 157–172. [CrossRef][PubMed]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  6. Cleenwerck I., Gonzalez A., Camu N., Engelbeen K., De Vos P., De Vuyst L.. ( 2008;). Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. . Int J Syst Evol Microbiol 58:, 2180–2185. [CrossRef][PubMed]
    [Google Scholar]
  7. Cleenwerck I., De Vos P., De Vuyst L.. ( 2010;). Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov.. Int J Syst Evol Microbiol 60:, 2277–2283. [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Frateur J.. ( 1970;). The status of the generic name Gluconobacter. . Int J Syst Bacteriol 20:, 83–95. [CrossRef]
    [Google Scholar]
  9. Deppenmeier U., Hoffmeister M., Prust C.. ( 2002;). Biochemistry and biotechnological applications of Gluconobacter strains. . Appl Microbiol Biotechnol 60:, 233–242. [CrossRef][PubMed]
    [Google Scholar]
  10. Gammon K. S., Livens S., Pawlowsky K., Rawling S. J., Chandra S., Middleton A. M.. ( 2007;). Development of real-time PCR methods for the rapid detection of low concentrations of Gluconobacter and Gluconacetobacter species in an electrolyte replacement drink. . Lett Appl Microbiol 44:, 262–267. [CrossRef][PubMed]
    [Google Scholar]
  11. Gosselé F., Swings J., De Ley J.. ( 1980;). A rapid, simple and simultaneous detection of 2-ketogluconic, 5-ketogluconic and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C1:, 178–181.
    [Google Scholar]
  12. Gosselé F., Swings J., Kersters K., De Ley J.. ( 1983;). Numerical analysis of phenotypic features and protein gel electropherograms of Gluconobacter Asai 1935 emend. mut. char. Asai, Iizuka, and Komagata 1964. . Int J Syst Bacteriol 33:, 65–81. [CrossRef]
    [Google Scholar]
  13. Katsura K., Yamada Y., Uchimura T., Komagata K.. ( 2002;). Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym of Gluconobacter cerinus Yamada and Akita 1984. . Int J Syst Evol Microbiol 52:, 1635–1640. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kommanee J., Tanasupawat S., Yukphan P., Malimas T., Muramatsu Y., Nakagawa Y., Yamada Y.. ( 2011;). Gluconobacter nephelii sp. nov., an acetic acid bacterium in the class Alphaproteobacteria. . Int J Syst Evol Microbiol 61:, 2117–2122. [CrossRef][PubMed]
    [Google Scholar]
  16. Lisdiyanti P., Katsura K., Potacharoen W., Navarro R. R., Yamada Y., Uchimura T., Komagata K.. ( 2003;). Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. . Microbiol Cult Collect 19:, 91–99.
    [Google Scholar]
  17. Mahenthiralingam E., Campbell M. E., Foster J., Lam J. S., Speert D. P.. ( 1996;). Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. . J Clin Microbiol 34:, 1129–1135.[PubMed]
    [Google Scholar]
  18. Malimas T., Yukphan P., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y.. ( 2007;). Gluconobacter kondonii sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. . J Gen Appl Microbiol 53:, 301–307. [CrossRef][PubMed]
    [Google Scholar]
  19. Malimas T., Yukphan P., Takahashi M., Muramatsu Y., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y.. ( 2009a;). Gluconobacter japonicus sp. nov., an acetic acid bacterium in the Alphaproteobacteria. . Int J Syst Evol Microbiol 59:, 466–471. [CrossRef][PubMed]
    [Google Scholar]
  20. Malimas T., Yukphan P., Lundaa T., Muramatsu Y., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y.. & other authors ( 2009b;). Gluconobacter kanchanaburiensis sp. nov., a brown pigment-producing acetic acid bacterium for Thai isolates in the Alphaproteobacteria. . J Gen Appl Microbiol 55:, 247–254. [CrossRef][PubMed]
    [Google Scholar]
  21. Mason L. M., Claus G. W.. ( 1989;). Phenotypic characteristics correlated with deoxyribonucleic acid sequence similarities for three species of Gluconobacter: G. oxydans (Henneberg 1897) De Ley 1961, G. frateurii sp. nov., and G. asaii sp. nov.. Int J Syst Bacteriol 39:, 174–184. [CrossRef]
    [Google Scholar]
  22. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  23. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W. G., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  24. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  25. Raspor P., Goranovic D.. ( 2008;). Biotechnological applications of acetic acid bacteria. . Crit Rev Biotechnol 28:, 101–124. [CrossRef][PubMed]
    [Google Scholar]
  26. Sakamoto K., Konings W. N.. ( 2003;). Beer spoilage bacteria and hop resistance. . Int J Food Microbiol 89:, 105–124. [CrossRef][PubMed]
    [Google Scholar]
  27. Snauwaert I., Papalexandratou Z., De Vuyst L., Vandamme P.. ( 2013;). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. . Int J Syst Evol Microbiol 63:, 1709–1716. [CrossRef][PubMed]
    [Google Scholar]
  28. Spitaels F., Li L., Wieme A., Balzarini T., Cleenwerck I., Van Landschoot A., De Vuyst L., Vandamme P.. ( 2013;). Acetobacter lambici sp. nov. isolated from fermenting lambic beer. . Int J Syst Evol Microbiol ijs.0.057315-0; published ahead of print December 20, 2013, doi:10.1099/ijs.0.057315-0. [CrossRef][PubMed]
    [Google Scholar]
  29. Strohalm M., Kavan D., Novák P., Volný M., Havlícek V.. ( 2010;). mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. . Anal Chem 82:, 4648–4651. [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  32. Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y.. ( 2004;). Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. . J Gen Appl Microbiol 50:, 159–167. [CrossRef][PubMed]
    [Google Scholar]
  33. Tanasupawat S., Kommanee J., Yukphan P., Moonmangmee D., Muramatsu Y., Nakagawa Y., Yamada Y.. ( 2011;). Gluconobacter uchimurae sp. nov., an acetic acid bacterium in the α-Proteobacteria. . J Gen Appl Microbiol 57:, 293–301. [CrossRef][PubMed]
    [Google Scholar]
  34. Van Oevelen D., Spaepen M., Timmermans P., Verachtert H.. ( 1977;). Microbiological aspects of spontaneous wort fermentation in the production of lambic and gueuze. . J Inst Brew 83:, 356–360. [CrossRef]
    [Google Scholar]
  35. Vaughan A., O'Sullivan T., Van Sinderen D.. ( 2005;). Enhancing the microbiological stability of malt and beer – a review. . J Inst Brew 111:, 355–371. [CrossRef]
    [Google Scholar]
  36. Wieme A., Cleenwerck I., Van Landschoot A., Vandamme P.. ( 2012;). Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici. . Int J Syst Evol Microbiol 62:, 3105–3108. [CrossRef][PubMed]
    [Google Scholar]
  37. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V.. ( 1990;). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. . Nucleic Acids Res 18:, 6531–6535. [CrossRef][PubMed]
    [Google Scholar]
  38. Yamada Y., Yukphan P.. ( 2008;). Genera and species in acetic acid bacteria. . Int J Food Microbiol 125:, 15–24. [CrossRef][PubMed]
    [Google Scholar]
  39. Yamada Y., Aida K., Uemura T.. ( 1969;). Enzymatic studies on the oxidation of sugar and sugar alcohol. . J Gen Appl Microbiol 15:, 181–196. [CrossRef]
    [Google Scholar]
  40. Yamada Y., Okada Y., Kondo K.. ( 1976;). Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. . J Gen Appl Microbiol 22:, 237–245. [CrossRef]
    [Google Scholar]
  41. Yamada Y., Hosono R., Lisdyanti P., Widyastuti Y., Saono S., Uchimura T., Komagata K.. ( 1999;). Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. . J Gen Appl Microbiol 45:, 23–28. [CrossRef][PubMed]
    [Google Scholar]
  42. Yukphan P., Potacharoen W., Nakagawa Y., Tanticharoen M., Yamada Y.. ( 2004;). Identification of strains assigned to the genus Gluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S-23S rDNA internal transcribed spacer regions. . J Gen Appl Microbiol 50:, 9–15. [CrossRef][PubMed]
    [Google Scholar]
  43. Yukphan P., Malimas T., Lundaa T., Muramatsu Y., Takahashi M., Kaneyasu M., Tanasupawat S., Nakagawa Y., Suzuki K.. & other authors ( 2010;). Gluconobacter wancherniae sp. nov., an acetic acid bacterium from Thai isolates in the alpha-Proteobacteria. . J Gen Appl Microbiol 56:, 67–73. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059311-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059311-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error