1887

Abstract

A taxonomic study was carried out on strain CY1, which is a novel bacterium isolated from wastewater sludge of a melamine-producing factory in Sanming city, Fujian, China. Strain CY1 was shown to rapidly and completely degrade melamine to NH and CO under aerobic conditions. The isolate was Gram-stain-negative, short-rod-shaped and motile by one unipolar flagellum. Growth was observed at salinities from 0 to 7 % NaCl (optimum, 0.1 %), at temperatures from 15 to 50 °C (optimum, 40–45 °C) and at pH 7–9.5 (optimum pH 9.5). Quinone-8 was detected as the major respiratory quinone. 16S rRNA gene sequence comparisons showed that strain CY1 was affiliated to the family in the class . It was most closely related to members of the genera (95.5 %), (94.6–95.1 %), (92.9–95.4 %), (93.0–93.6 %) and (92.6–93.9 %). The average nucleotide identity (ANI) values between strain CY1 and those representing related genera ranged from 84.0 to 86.1 % using Mummer, and from 74.9 to 81.1 % using . The dominant fatty acids were Cω7 and/or Cω6, C, C 3-OH and Cω7 and/or Cω6, and the major polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and one unidentified aminophospholipid. The G+C content of the chromosomal DNA was 69.5 mol%. On the basis of the phenotypic and phylogenetic data, strain CY1 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is CY1 ( = CCTCC AB 2012024 = DSM 26006).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055103-0
2014-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/1938.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055103-0&mimeType=html&fmt=ahah

References

  1. Chen W.-M., Lin Y.-S., Sheu D.-S., Sheu S.-Y.. ( 2012;). Delftia litopenaei sp. nov., a poly-β-hydroxybutyrate-accumulating bacterium isolated from a freshwater shrimp culture pond. . Int J Syst Evol Microbiol 62:, 2315–2321. [CrossRef][PubMed]
    [Google Scholar]
  2. Dong X.-Z., Cai M.-Y.. ( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press (English translation);.
    [Google Scholar]
  3. Ingelfinger J. R.. ( 2008;). Melamine and the global implications of food contamination. . N Engl J Med 359:, 2745–2748. [CrossRef][PubMed]
    [Google Scholar]
  4. Jutzi K., Cook A. M., Hütter R.. ( 1982;). The degradative pathway of the s-triazine melamine. The steps to ring cleavage. . Biochem J 208:, 679–684.[PubMed]
    [Google Scholar]
  5. Kämpfer P., Thummes K., Chu H.-I., Tan C.-C., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Young C.-C.. ( 2008;). Pseudacidovorax intermedius gen. nov., sp. nov., a novel nitrogen-fixing betaproteobacterium isolated from soil. . Int J Syst Evol Microbiol 58:, 491–495. [CrossRef][PubMed]
    [Google Scholar]
  6. Karns J. S.. ( 1999;). Gene sequence and properties of an s-triazine ring-cleavage enzyme from Pseudomonas sp. strain NRRLB-12227. . Appl Environ Microbiol 65:, 3512–3517.[PubMed]
    [Google Scholar]
  7. Khan S. T., Hiraishi A.. ( 2002;). Diaphorobacter nitroreducens gen. nov., sp nov, a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. . J Gen Appl Microbiol 48:, 299–308. [CrossRef][PubMed]
    [Google Scholar]
  8. Klein S., Lorenzo C., Hoffmann S., Walther J. M., Storbeck S., Piekarski T., Tindall B. J., Wray V., Nimtz M., Moser J.. ( 2009;). Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. . Mol Microbiol 71:, 551–565. [CrossRef][PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19, 161–207.
    [Google Scholar]
  10. Li D., Rothballer M., Schmid M., Esperschütz J., Hartmann A.. ( 2011;). Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. . Int J Syst Evol Microbiol 61:, 2589–2594. [CrossRef][PubMed]
    [Google Scholar]
  11. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55:, 1181–1186. [CrossRef][PubMed]
    [Google Scholar]
  12. Mechichi T., Stackebrandt E., Fuchs G.. ( 2003;). Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β-proteobacterium. . Int J Syst Evol Microbiol 53:, 147–152. [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  14. Pham V. H., Park S.-J., Roh Y., Roh D.-H., Rhee S.-K.. ( 2009;). Diaphorobacter oryzae sp. nov., isolated from a thiosulfate-oxidizing enrichment culture. . Int J Syst Evol Microbiol 59:, 218–221. [CrossRef][PubMed]
    [Google Scholar]
  15. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI;.
    [Google Scholar]
  18. Shelton D. R., Karns J. S., McCarty G. W., Durham D. R.. ( 1997;). Metabolism of melamine by Klebsiella terragena. . Appl Environ Microbiol 63:, 2832–2835.[PubMed]
    [Google Scholar]
  19. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H.. ( 2003;). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 53:, 479–484. [CrossRef][PubMed]
    [Google Scholar]
  20. Shiomi N., Ako M.. ( 2012;). Biodegradation of melamine and cyanuric acid by a newly-isolated Microbacterium strain. . Adv Microbiol 2:, 303–309. [CrossRef]
    [Google Scholar]
  21. Takagi K., Fujii K., Yamazaki K., Harada N., Iwasaki A.. ( 2012;). Biodegradation of melamine and its hydroxy derivatives by a bacterial consortium containing a novel Nocardioides species. . Appl Microbiol Biotechnol 94:, 1647–1656. [CrossRef][PubMed]
    [Google Scholar]
  22. Tamaoka J., Ha D.-M., Komagata K.. ( 1987;). Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. . Int J Syst Bacteriol 37:, 52–59. [CrossRef]
    [Google Scholar]
  23. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  24. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  25. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  26. Tittsler R. P., Sandholzer L. A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  27. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I.. ( 1999;). Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 567–576. [CrossRef][PubMed]
    [Google Scholar]
  28. Willems A., Falsen E., Pot B., Jantzen E., Hoste B., Vandamme P., Gillis M., Kersters K., De Ley J.. ( 1990;). Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov.. Int J Syst Bacteriol 40:, 384–398. [CrossRef][PubMed]
    [Google Scholar]
  29. Willems A., De Ley J., Gillis M., Kersters K.. ( 1991;). NOTES: Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). . Int J Syst Bacteriol 41:, 445–450. [CrossRef]
    [Google Scholar]
  30. Wittcoff H. A., Reuben B. G., Plotkin J. S.. ( 2004;). Industrial organic chemicals. , 2nd edn.. Hoboken, NJ:: Wiley;. [CrossRef]
    [Google Scholar]
  31. Yu C.-P., Roh H., Chu K.-H.. ( 2007;). 17β-estradiol-degrading bacteria isolated from activated sludge. . Environ Sci Technol 41:, 486–492. [CrossRef][PubMed]
    [Google Scholar]
  32. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. . Genome Res 18:, 821–829. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055103-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055103-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error