1887

Abstract

A Gram-negative, motile, aerobic, oxidase- and catalase-positive rod, designated P10-2-4, was isolated from an intertidal sand sample collected from a coastal area of Qingdao (Yellow Sea), China. The isolate reduced nitrate to nitrite and grew at 4–33 °C and with 0.5–12 % (w/v) NaCl. The predominant cellular fatty acids were summed feature 3 (Cω7 and/or iso-C 2-OH), Cω7 and C. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major respiratory quinone was Q-8. The genomic DNA G+C content was 45.1 %. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain P10-2-4 belonged to the genus . The isolate shared the highest 16S rRNA gene sequence similarity (98.1 %) with JAMM 0745 and 96.9, 96.5 and 95.9 % sequence similarities with S3-22, LHW37 and NAG-2N-126, respectively, strains of the other three recognized species in the genus. DNA–DNA relatedness between strain P10-2-4 and JCM 14595 was 35.6 %. Furthermore, strain P10-2-4 could be distinguished from the representatives of the genus by a combination of phenotypic characteristics, such as temperature and NaCl concentration for growth, nitrate reduction, DNase activity and assimilation of substrates. The data from this study suggests that strain P10-2-4 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is P10-2-4 ( = CGMCC 1.10971  = KCTC 23686).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.041970-0
2013-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1673.html?itemId=/content/journal/ijsem/10.1099/ijs.0.041970-0&mimeType=html&fmt=ahah

References

  1. Buck J. D. . ( 1982; ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  2. Collins M. D. , Jones D. . ( 1980; ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  3. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  5. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Hedlund B. P. , Geiselbrecht A. D. , Bair T. J. , Staley J. T. . ( 1999; ). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov.. Appl Environ Microbiol 65:, 251–259.[PubMed]
    [Google Scholar]
  7. Huß V. A. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[CrossRef]
    [Google Scholar]
  9. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  10. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  12. Lee H.-W. , Shin N.-R. , Lee J. , Roh S. W. , Whon T. W. , Bae J.-W. . ( 2012; ). Neptunomonas concharum sp. nov., isolated from a dead ark clam, and emended description of the genus Neptunomonas . . Int J Syst Evol Microbiol 62:, 2657–2661. [CrossRef] [PubMed]
    [Google Scholar]
  13. Leifson E. . ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  14. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  15. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  16. Miyazaki M. , Nogi Y. , Fujiwara Y. , Kawato M. , Kubokawa K. , Horikoshi K. . ( 2008; ). Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses off Kagoshima, Japan. . Int J Syst Evol Microbiol 58:, 866–871. [CrossRef] [PubMed]
    [Google Scholar]
  17. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA−DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  21. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  22. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  23. Zhang X. Y. , Zhang Y. J. , Yu Y. , Li H. J. , Gao Z. M. , Chen X. L. , Chen B. , Zhang Y. Z. . ( 2010; ). Neptunomonas antarctica sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 60:, 1958–1961. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.041970-0
Loading
/content/journal/ijsem/10.1099/ijs.0.041970-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error