1887

Abstract

Two groups of Gram-negative, aerobic bacterial strains previously isolated from experimental biofilters were investigated to determine their taxonomic position. Based on their 16S rRNA gene sequences, these isolates formed two distinct groups within the genus . The gene sequence similarities of the new isolates to the type strains of species were below 98.3 %. The presence of ubiquinone-10, C 11 as the predominant fatty acid and a polar lipid pattern with phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol and phosphatidylethanolamine was in accordance with the characteristics of this genus. The results of DNA–DNA hybridization, biochemical tests and chemotaxonomic properties allowed genotypic and phenotypic differentiation of the strains from all recognized species of the genus . Therefore, the isolates were assigned to two novel species of this genus for which the names sp. nov. (type strain 905/1 = DSM 19730 = CCUG 55251) and sp. nov. (type strain 1006/1 = DSM 19714 = CCUG 55250) are proposed. An emended description of the genus is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.038224-0
2012-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2511.html?itemId=/content/journal/ijsem/10.1099/ijs.0.038224-0&mimeType=html&fmt=ahah

References

  1. Ahrens A. . ( 1993; ). Taxonomische und funktionelle Charakterisierung von Gram-negativen Bakterien aus Biofiltern, die zur Behandlung von Emissionen einer Tierkörperverwertungsanlage eingesetzt wurden. PhD thesis, University of Osnabrück, Germany.
  2. Ahrens A. , Lipski A. , Klatte S. , Busse H.-J. , Auling G. , Altendorf K. . ( 1997; ). Polyphasic classification of Proteobacteria isolated from biofilters. . Syst Appl Microbiol 20:, 255–267. [CrossRef]
    [Google Scholar]
  3. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bambauer A. , Rainey F. A. , Stackebrandt E. , Winter J. . ( 1998; ). Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. . Arch Microbiol 169:, 293–302. [CrossRef] [PubMed]
    [Google Scholar]
  5. CBN ( 1977; ). The nomenclature of lipids. . Eur J Biochem 79:, 11–21. [CrossRef]
    [Google Scholar]
  6. Choma A. , Komaniecka I. . ( 2002; ). Analysis of phospholipids and ornithine-containing lipids from Mesorhizobium spp. . Syst Appl Microbiol 25:, 326–331. [CrossRef] [PubMed]
    [Google Scholar]
  7. Doronina N. V. , Kaparullina E. N. , Trotsenko Y. A. , Nörtemann B. , Bucheli-Witschel M. , Weilenmann H. U. , Egli T. . ( 2010; ). Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. . Int J Syst Evol Microbiol 60:, 1044–1051. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fritsche K. , Auling G. , Andreesen J. R. , Lechner U. . ( 1999; ). Defluvibacter lusatiae gen. nov., sp. nov., a new chlorophenol-degrading member of the α-2 subgroup of proteobacteria. . Syst Appl Microbiol 22:, 197–204. [CrossRef] [PubMed]
    [Google Scholar]
  9. Herzog P. , Winkler I. , Wolking D. , Kämpfer P. , Lipski A. . ( 2008; ). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. . Int J Syst Evol Microbiol 58:, 26–33. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kämpfer P. , Martin E. , Lodders N. , Jäckel U. . ( 2009; ). Transfer of Defluvibacter lusatiensis to the genus Aquamicrobium as Aquamicrobium lusatiense comb. nov. and description of Aquamicrobium aerolatum sp. nov.. Int J Syst Evol Microbiol 59:, 2468–2470. [CrossRef] [PubMed]
    [Google Scholar]
  11. Keswani J. , Whitman W. B. . ( 2001; ). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. . Int J Syst Evol Microbiol 51:, 667–678.[PubMed]
    [Google Scholar]
  12. Lechner U. , Baumbach R. , Becker D. , Kitunen V. , Auling G. , Salkinoja-Salonen M. . ( 1995; ). Degradation of 4-chloro-2-methylphenol by an activated sludge isolate and its taxonomic description. . Biodegradation 6:, 83–92. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lipski A. , Altendorf K. . ( 1997; ). Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. . Syst Appl Microbiol 20:, 448–457. [CrossRef]
    [Google Scholar]
  14. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167.[CrossRef]
    [Google Scholar]
  15. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Nichols P. D. , Guckert J. B. , White D. C. . ( 1986; ). Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. . J Microbiol Methods 5:, 49–55. [CrossRef]
    [Google Scholar]
  17. Peix A. , Rivas R. , Trujillo M. E. , Vancanneyt M. , Velázquez E. , Willems A. . ( 2005; ). Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov.. Int J Syst Evol Microbiol 55:, 1163–1166. [CrossRef] [PubMed]
    [Google Scholar]
  18. Sasser M. . ( 1990; ). Identification of bacteria through fatty acid analysis. . In Methods in Phytobacteriology, pp. 199–204. Edited by Klement Z. , Rudolph K. , Sands D. C. . . Budapest:: Akademiai Kiado;.
    [Google Scholar]
  19. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599.[CrossRef]
    [Google Scholar]
  20. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  21. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.038224-0
Loading
/content/journal/ijsem/10.1099/ijs.0.038224-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error