1887

Abstract

A bacterial strain designated GISW-4 was isolated from the reef-building coral , collected from seawater off the coast of southern Taiwan, and was characterized in this taxonomic study using a polyphasic approach. Strain GISW-4 was Gram-stain-negative, aerobic, beige, rod-shaped, and dimorphic, either non-motile with stalks (or prosthecae), or non-stalked and motile by means of a single polar flagellum. 16S rRNA gene sequence studies showed that the novel strain clustered with C116-18 (98.9 % 16S rRNA gene sequence similarity). Strain GISW-4 exhibited optimal growth at 35–40 °C, 1–2 % (w/v) NaCl and at pH 7–9. The predominant cellular fatty acids (>10 %) were C, Cω7 and Cω7 11-methyl. The predominant polar lipids were phosphatidylglycerol, sulfoquinovosyl diacylglycerol and two unknown phospholipids (PL1–2). The major respiratory quinones were ubiquinone Q-10 and Q-9, and the DNA G+C content was 61.6 mol%. The results of physiological and biochemical tests allowed clear phenotypic differentiation of strain GISW-4 from the type strain of . It is evident from the genotypic, phenotypic and chemotaxonomic data that the isolate should be classified as a novel species of the genus . The name proposed for this taxon is sp. nov., with the type strain GISW-4 ( = LMG 25723 = BCRC 80207).

Funding
This study was supported by the:
  • , Academia Sinica , (Award Thematic Grant 20082010)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.036780-0
2012-09-01
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/9/2241.html?itemId=/content/journal/ijsem/10.1099/ijs.0.036780-0&mimeType=html&fmt=ahah

References

  1. Abraham W. R., Strömpl C., Bennasar A., Vancanneyt M., Snauwaert C., Swings J., Smit J., Moore E. R. B. 2002; Phylogeny of Maricaulis Abraham et al. 1999 and proposal of Maricaulis virginensis sp. nov., M. parjimensis sp. nov., M. washingtonensis sp. nov. and M. salignorans sp. nov. Int J Syst Evol Microbiol 52:2191–2201 [CrossRef][PubMed]
    [Google Scholar]
  2. Abraham W. R., Strömpl C., Vancanneyt M., Bennasar A., Swings J., Lünsdorf H., Smit J., Moore E. R. B. 2004; Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol 54:1227–1234 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  4. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  5. Choi D. H., Cho B. C. 2006; Shimia marina gen. nov., sp. nov., a novel bacterium of the Roseobacter clade isolated from biofilm in a coastal fish farm. Int J Syst Evol Microbiol 56:1869–1873 [CrossRef][PubMed]
    [Google Scholar]
  6. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366 [CrossRef]
    [Google Scholar]
  8. Embley T. M., Wait R. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp. 121–161 Edited by Goodfellow M., O’Donnell A. G. Chichester: John Wiley & Sons Ltd;
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Hosoya S., Adachi K., Kasai H. 2009; Thalassomonas actiniarum sp. nov. and Thalassomonas haliotis sp. nov., isolated from marine animals. Int J Syst Evol Microbiol 59:686–690 [CrossRef][PubMed]
    [Google Scholar]
  14. Hsu S. C., Lockwood J. L. 1975; Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426[PubMed]
    [Google Scholar]
  15. Kang H. S., Lee S. D. 2009; Ponticaulis koreensis gen. nov., sp. nov., a new member of the family Hyphomonadaceae isolated from seawater. Int J Syst Evol Microbiol 59:2951–2955 [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  17. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  18. Kumar S., Tamura K., Nei M. 2004; MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H. 2005; The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee K., Lee H. K., Choi T.-H., Cho J.-C. 2007; Robiginitomaculum antarcticum gen. nov., sp. nov., a member of the family Hyphomonadaceae, from Antarctic seawater. Int J Syst Evol Microbiol 57:2595–2599 [CrossRef][PubMed]
    [Google Scholar]
  21. Lyman J., Fleming R. H. 1940; Composition of sea water. J Mar Res 3:134–146
    [Google Scholar]
  22. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  25. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  27. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.;
  28. Schlesner H., Bartels C., Sittig M., Dorsch M., Stackebrandt E. 1990; Taxonomic and phylogenetic studies on a new taxon of budding, hyphal Proteobacteria, Hirschia baltica gen. nov., sp. nov. Int J Syst Bacteriol 40:443–451 [CrossRef][PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Strömpl C., Hold G. L., Lünsdorf H., Graham J., Gallacher S., Abraham W. R., Moore E. R. B., Timmis K. N. 2003; Oceanicaulis alexandrii gen. nov., sp. nov., a novel stalked bacterium isolated from a culture of the dinoflagellate Alexandrium tamarense (Lebour) Balech. Int J Syst Evol Microbiol 53:1901–1906 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  33. Weiner R. M., Melick M., O’Neill K., Quintero E. 2000; Hyphomonas adhaerens sp. nov., Hyphomonas johnsonii sp. nov. and Hyphomonas rosenbergii sp. nov., marine budding and prosthecate bacteria. Int J Syst Evol Microbiol 50:459–469 [CrossRef][PubMed]
    [Google Scholar]
  34. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.036780-0
Loading
/content/journal/ijsem/10.1099/ijs.0.036780-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error