1887

Abstract

A Gram-negative, non-spore-forming rod (CC-LN1-12) was isolated from coastal soil samples of Lutao Island (Green Island), Taiwan, and its taxonomic position was studied. 16S rRNA gene sequence analysis showed that isolate CC-LN1-12 was grouped into the cluster, with the highest similarities to ABABA23 (97.9 %), TF-17 (97.7 %) and CN85 (97.7 %), similarities to all other species of the genus were lower than 96.8 %. The polyamine pattern contained the major compounds spermidine and cadaverine. The fatty acid profile, comprising the major fatty acids iso-C, iso-Cω9, Cω7 and iso-C 3-OH as the major hydroxylated fatty acid, supported the affiliation of strain CC-LN1-12 to the genus . DNA–DNA hybridizations between strain CC-LN1-12 and ABABA23, CN85 and JCM 12187 resulted in relatedness values of 21.5 % (14.3 %, reciprocal analysis), 35.9 % (48.5 %, reciprocal analysis) and 48.1 % (52.1 %, reciprocal analysis), respectively. From these data, as well as from physiological and biochemical tests, strain CC-LN1-12 could be clearly differentiated from the most closely related species of the genus . It is concluded that strain CC-LN1-12 represents a novel species, for which the name sp. nov. is proposed. The type strain is CC-LN1-12 ( = LMG 26125 = CCM 7856).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034512-0
2012-10-01
2021-03-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2485.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034512-0&mimeType=html&fmt=ahah

References

  1. Baba A., Miyazaki M., Nagahama T., Nogi Y. 2011; Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov., chitin-degrading bacteria isolated from mangrove forests. Int J Syst Evol Microbiol 61:2215–2220 [CrossRef][PubMed]
    [Google Scholar]
  2. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  4. Collins M. D., Goodfellow M., Minnikin D. E. 1979; Isoprenoid quinones in the classification of coryneform and related bacteria. J Gen Microbiol 110:127–136[PubMed] [CrossRef]
    [Google Scholar]
  5. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Hamana K., Sato W., Gouma K., Yu J., Ino Y., Umemura Y., Mochizuki C., Takatsuka K., Kigure Y. other authors 2006; Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria . Ann Gunma Health Sci 27:1–16
    [Google Scholar]
  7. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  8. Kämpfer P., Kroppenstedt R. M. 2004; Pseudonocardia benzenivorans sp. nov.. Int J Syst Evol Microbiol 54:749–751 [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [CrossRef][PubMed]
    [Google Scholar]
  11. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  12. Miyazaki M., Nogi Y., Ohta Y., Hatada Y., Fujiwara Y., Ito S., Horikoshi K. 2008; Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58:1128–1133 [CrossRef][PubMed]
    [Google Scholar]
  13. Moaledj K. 1986; Comparison of gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5:303–310 [CrossRef]
    [Google Scholar]
  14. Nishijima M., Takadera T., Imamura N., Kasai H., An K. D., Adachi K., Nagao T., Sano H., Yamasato K. 2009; Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 59:1696–1707 [CrossRef][PubMed]
    [Google Scholar]
  15. Stolz A., Busse H.-J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  17. Tang S.-K., Wang Y., Cai M., Lou K., Mao P.-H., Jin X., Jiang C.-L., Xu L.-H., Li W.-J. 2008; Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 58:2036–2040 [CrossRef][PubMed]
    [Google Scholar]
  18. Wang C.-S., Wang Y., Xu X.-W., Zhang D.-S., Wu Y.-H., Wu M. 2009; Microbulbifer donghaiensis sp. nov., isolated from marine sediment of the East China Sea. Int J Syst Evol Microbiol 59:545–549 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon J.-H., Kim I.-G., Shin D. Y., Kang K. H., Park Y.-H. 2003a; Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57 [CrossRef][PubMed]
    [Google Scholar]
  20. Yoon J. H., Kim H., Kang K. H., Oh T. K., Park Y. H. 2003b; Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov.. Int J Syst Evol Microbiol 53:1357–1361 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon J.-H., Kim I.-G., Oh T.-K., Park Y.-H. 2004; Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54:1111–1116 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon J. H., Jung S. Y., Kang S. J., Oh T. K. 2007; Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol 57:2365–2369 [CrossRef][PubMed]
    [Google Scholar]
  23. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:179–186 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034512-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034512-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error