1887

Abstract

A Gram-negative, non-spore-forming rod (CC-LN1-12) was isolated from coastal soil samples of Lutao Island (Green Island), Taiwan, and its taxonomic position was studied. 16S rRNA gene sequence analysis showed that isolate CC-LN1-12 was grouped into the cluster, with the highest similarities to ABABA23 (97.9 %), TF-17 (97.7 %) and CN85 (97.7 %), similarities to all other species of the genus were lower than 96.8 %. The polyamine pattern contained the major compounds spermidine and cadaverine. The fatty acid profile, comprising the major fatty acids iso-C, iso-Cω9, Cω7 and iso-C 3-OH as the major hydroxylated fatty acid, supported the affiliation of strain CC-LN1-12 to the genus . DNA–DNA hybridizations between strain CC-LN1-12 and ABABA23, CN85 and JCM 12187 resulted in relatedness values of 21.5 % (14.3 %, reciprocal analysis), 35.9 % (48.5 %, reciprocal analysis) and 48.1 % (52.1 %, reciprocal analysis), respectively. From these data, as well as from physiological and biochemical tests, strain CC-LN1-12 could be clearly differentiated from the most closely related species of the genus . It is concluded that strain CC-LN1-12 represents a novel species, for which the name sp. nov. is proposed. The type strain is CC-LN1-12 ( = LMG 26125 = CCM 7856).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.034512-0
2012-10-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/10/2485.html?itemId=/content/journal/ijsem/10.1099/ijs.0.034512-0&mimeType=html&fmt=ahah

References

  1. Baba A. , Miyazaki M. , Nagahama T. , Nogi Y. . ( 2011; ). Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov., chitin-degrading bacteria isolated from mangrove forests. . Int J Syst Evol Microbiol 61:, 2215–2220. [CrossRef] [PubMed]
    [Google Scholar]
  2. Busse H.-J. , Auling G. . ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  3. Collins M. D. , Jones D. . ( 1980; ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  4. Collins M. D. , Goodfellow M. , Minnikin D. E. . ( 1979; ). Isoprenoid quinones in the classification of coryneform and related bacteria. . J Gen Microbiol 110:, 127–136.[PubMed] [CrossRef]
    [Google Scholar]
  5. González J. M. , Mayer F. , Moran M. A. , Hodson R. E. , Whitman W. B. . ( 1997; ). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. . Int J Syst Bacteriol 47:, 369–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Hamana K. , Sato W. , Gouma K. , Yu J. , Ino Y. , Umemura Y. , Mochizuki C. , Takatsuka K. , Kigure Y. . & other authors ( 2006; ). Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria . . Ann Gunma Health Sci 27:, 1–16.
    [Google Scholar]
  7. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  8. Kämpfer P. , Kroppenstedt R. M. . ( 2004; ). Pseudonocardia benzenivorans sp. nov.. Int J Syst Evol Microbiol 54:, 749–751. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kämpfer P. , Steiof M. , Dott W. . ( 1991; ). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  10. Kämpfer P. , Dreyer U. , Neef A. , Dott W. , Busse H.-J. . ( 2003; ). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef] [PubMed]
    [Google Scholar]
  11. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979; ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  12. Miyazaki M. , Nogi Y. , Ohta Y. , Hatada Y. , Fujiwara Y. , Ito S. , Horikoshi K. . ( 2008; ). Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. . Int J Syst Evol Microbiol 58:, 1128–1133. [CrossRef] [PubMed]
    [Google Scholar]
  13. Moaledj K. . ( 1986; ). Comparison of gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. . J Microbiol Methods 5:, 303–310. [CrossRef]
    [Google Scholar]
  14. Nishijima M. , Takadera T. , Imamura N. , Kasai H. , An K. D. , Adachi K. , Nagao T. , Sano H. , Yamasato K. . ( 2009; ). Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. . Int J Syst Evol Microbiol 59:, 1696–1707. [CrossRef] [PubMed]
    [Google Scholar]
  15. Stolz A. , Busse H.-J. , Kämpfer P. . ( 2007; ). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef] [PubMed]
    [Google Scholar]
  16. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  17. Tang S.-K. , Wang Y. , Cai M. , Lou K. , Mao P.-H. , Jin X. , Jiang C.-L. , Xu L.-H. , Li W.-J. . ( 2008; ). Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. . Int J Syst Evol Microbiol 58:, 2036–2040. [CrossRef] [PubMed]
    [Google Scholar]
  18. Wang C.-S. , Wang Y. , Xu X.-W. , Zhang D.-S. , Wu Y.-H. , Wu M. . ( 2009; ). Microbulbifer donghaiensis sp. nov., isolated from marine sediment of the East China Sea. . Int J Syst Evol Microbiol 59:, 545–549. [CrossRef] [PubMed]
    [Google Scholar]
  19. Yoon J.-H. , Kim I.-G. , Shin D. Y. , Kang K. H. , Park Y.-H. . ( 2003a; ). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. . Int J Syst Evol Microbiol 53:, 53–57. [CrossRef] [PubMed]
    [Google Scholar]
  20. Yoon J. H. , Kim H. , Kang K. H. , Oh T. K. , Park Y. H. . ( 2003b; ). Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov.. Int J Syst Evol Microbiol 53:, 1357–1361. [CrossRef] [PubMed]
    [Google Scholar]
  21. Yoon J.-H. , Kim I.-G. , Oh T.-K. , Park Y.-H. . ( 2004; ). Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. . Int J Syst Evol Microbiol 54:, 1111–1116. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yoon J. H. , Jung S. Y. , Kang S. J. , Oh T. K. . ( 2007; ). Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 57:, 2365–2369. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.034512-0
Loading
/content/journal/ijsem/10.1099/ijs.0.034512-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error