1887

Abstract

Three strains of the marine, gliding, pigmented, facultatively anaerobic, heterotrophic, Gram-negative bacteria were isolated from the green algae (Kütz) Kornm and Ruprecht inhabiting the Sea of Japan. 16S rDNA sequence analysis indicated that the strains were members of the family , in which they occupied separate lineages. The predominant cellular fatty acids were i15 : 0, a15 : 0, i15 : 1, 15 : 0, 15 : 16, i15 : 0 3-OH and i17 : 0 3-OH. The DNA base compositions were 31–33 mol% G+C. Based on the phenotypic, genotypic, chemotaxonomic and phylogenetic analyses, the novel bacteria should be placed in a novel taxon as gen. nov., sp. nov. with type strain KMM 3902 (=KCTC 12103=DSM 15365).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02949-0
2004-07-01
2021-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541257.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02949-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K. 1992; Isoprenoid quinone composition of some marine Alteromonas , Marinomonas , Deleya , Pseudomonas and Shewanella species. J Gen Microbiol 138:2275–2281 [CrossRef]
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [CrossRef]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Med Sci 37:911–917
    [Google Scholar]
  5. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  6. Bowman J. P., Nichols D. S. 2002; Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol 52:1533–1541 [CrossRef]
    [Google Scholar]
  7. Bowman J. P., McCammon S. A., Brown J. L., Nichols P. D., McMeekin T. A. 1997; Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats. Int J Syst Bacteriol 47:670–677 [CrossRef]
    [Google Scholar]
  8. Bruns A., Rohde M., Berthe-Corti L. 2001; Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51:1997–2006 [CrossRef]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  11. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284 [CrossRef]
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Ivanova E. P., Nedashkovskaya O. I., Chun J. 7 other authors 2001; Arenibacter gen. nov., a new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 51:1987–1995 [CrossRef]
    [Google Scholar]
  14. Ivanova E. P., Alexeeva Y. V., Flavier S., Wright J. P., Zhukova N. V., Gorshkova N. M., Mikhailov V. V., Nicolau D. V., Christen R. 2004; Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae . Int J Syst Evol Microbiol 54:705–711 [CrossRef]
    [Google Scholar]
  15. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species isolated from soil. Int J Syst Bacteriol 48:59–68 [CrossRef]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  17. Lemos M. L., Toranzo A. E., Barja J. L. 1985; Modified medium for oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 40:1541–1543
    [Google Scholar]
  18. Macián M. C., Pujalte M. J., Márquez M. C., Ludwig W., Ventosa A., Garay E., Schleifer K. H. 2002; Gelidibacter mesophilus sp. nov., a novel marine bacterium in the family Flavobacteriaceae . Int J Syst Evol Microbiol 52:1325–1329 [CrossRef]
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  21. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003a; Reichenbachia agariperforans gen. nov., sp. nov., a novel marine bacterium in the phylum Cytophaga Flavobacterium Bacteroides . Int J Syst Evol Microbiol 53:81–85 [CrossRef]
    [Google Scholar]
  22. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003b; Vitellibacter vladivostokensis gen. nov., sp. nov. a new member of the phylum Cytophaga–Flavobacterium–Bacteroides . Int J Syst Evol Microbiol 53:1281–1286 [CrossRef]
    [Google Scholar]
  23. Nedashkovskaya O. I., Kim S. B., Han S. K. 7 other authors 2003c; Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int J Syst Evol Microbiol 53:1967–1971 [CrossRef]
    [Google Scholar]
  24. Nedashkovskaya O. I., Kim S. B., Han S. K., Rhee M. S., Lysenko A. M., Falsen E., Frolova G. M., Mikhailov V. V., Bae K. S. 2004; Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata . Int J Syst Evol Microbiol 54:119–123 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Svetashev V. I., Vaskovsky V. E. 1972; A simple technique for thin-layer microchromatography of lipids. J Chromatogr 67:376–378 [CrossRef]
    [Google Scholar]
  27. Vaskovsky V. E., Terekhova T. A. 1979; HPTLC of phospholipid mixtures containing phosphatidylglycerol. J High Resolut Chromatogr Chromatogr Commun 2:671–672 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02949-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02949-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error