1887

Abstract

Gram-negative bacteria were isolated from knots induced by in olive trees ( L.). A total of nine endophytic bacterial strains were isolated, each from inside a different tree knot. Biochemical characterization indicated that all the strains belong to the family . Phylogenetic analyses of the 16S rRNA genes of these novel isolates revealed that they formed a homogeneous cluster within species. DNA signatures of these isolates were identical to those described for the genus . The strains formed a homogeneous group as shown by DNA–DNA hybridization analysis and numerical analysis of phenotypic data, clearly differentiated from all species of with validly published names. The data provide strong evidence of the differentiation of these strains from the most closely related species. Therefore, these isolates represent a novel species, for which the name sp. nov. is proposed. The isolates are available at CFBP, CECT and ATCC. The G+C content is 52±0·5 mol%. The type strain is CFBP 6631 (=A37=ATCC 700880=CECT 5263).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02924-0
2004-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542217.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02924-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Billing, E. & Baker, L. A. E. ( 1963; ). Characteristics of Erwinia-like organisms found in plant material. J Appl Bacteriol 26, 58–65.[CrossRef]
    [Google Scholar]
  3. Brosius, J., Dull, T. J., Sleeter, D. D. & Noller, H. F. ( 1981; ). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef]
    [Google Scholar]
  4. Crosa, J. H., Brenner, D. J. & Falkow, S. ( 1973; ). Use of a single-strand specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J Bacteriol 115, 904–911.
    [Google Scholar]
  5. Descamps, P. & Véron, M. ( 1981; ). Une méthode de choix des caractères d'identification basée sur le théorème de Bayes et la mesure de l'information. Ann Microbiol (Paris) 132B, 157–170 (in French).
    [Google Scholar]
  6. Dye, D. W. ( 1969; ). A taxonomic study of the genus Erwinia. III. The “herbicola” group. N Z J Sci 12, 223–236.
    [Google Scholar]
  7. Ewing, W. H. & Fife, M. A. ( 1971; ). Enterobacter agglomerans, the Herbicola-Lathyri Bacteria. Atlanta, GA: Centers for Disease Control.
  8. Ewing, W. H. & Fife, M. A. ( 1972; ). Enterobacter agglomerans (Beijerinck) comb. nov. (the herbicola-lathyri bacteria). Int J Syst Bacteriol 22, 4–11.[CrossRef]
    [Google Scholar]
  9. Feinberg, A. P. & Vogelstein, B. ( 1983; ). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6–13.[CrossRef]
    [Google Scholar]
  10. García de los Ríos, J. E. ( 1999; ). Retama sphaerocarpa (L.) Boiss. a new host of Pseudomonas savastanoi. Phytopathol Mediterr 38, 54–60.
    [Google Scholar]
  11. Gavini, F., Mergaert, J., Beji, A., Mielcarek, C., Izard, D., Kersters, K. & De Ley, J. ( 1989; ). Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39, 337–345.[CrossRef]
    [Google Scholar]
  12. Grimont, P. A. D., Popoff, M. Y., Grimont, F., Coynault, C. & Lemelin, M. ( 1980; ). Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4, 325–330.[CrossRef]
    [Google Scholar]
  13. Hauben, L., Moore, E. R. B., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L. & Swings, J. ( 1998; ). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21, 384–397.[CrossRef]
    [Google Scholar]
  14. Huelsenbeck, J. P. & Ronquist, F. ( 2001; ). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.[CrossRef]
    [Google Scholar]
  15. Lelliott, R. A. & Dickey, R. S. ( 1984; ). Genus VII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920, 209AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 469–476. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  16. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  17. Mergaert, J., Verdonck, L. & Kersters, K. ( 1993; ). Transfer of Erwinia ananas (synonym, Erwinia uredovora) and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb. nov. and Pantoea stewartii (Smith 1898) comb. nov., respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int J Syst Bacteriol 43, 162–173.[CrossRef]
    [Google Scholar]
  18. Mergaert, J., Hauben, L., Cnockaert, M. C. & Swings, J. ( 1999; ). Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov. Int J Syst Bacteriol 49, 377–383.[CrossRef]
    [Google Scholar]
  19. Murray, M. G. & Thompson, W. F. ( 1989; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, vol. 1, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley.
  20. Notredame, C., Higgins, D. G. & Heringa, J. ( 2000; ). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205–217.[CrossRef]
    [Google Scholar]
  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Sneath, P. H. A. & Sokal, R. R. ( 1973; ). Numerical Taxonomy: the Principles and Practice of Numerical Classification. San Francisco: W. H. Freeman.
  23. Sutra, L., Christen, R., Bollet, C., Simoneau, P. & Gardan, L. ( 2001; ). Samsonia erythrinae gen. nov., sp. nov., isolated from bark necrotic lesions of Erythrina sp., and discrimination of plant-pathogenic Enterobacteriaceae by phenotypic features. Int J Syst Evol Microbiol 51, 1291–1304.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02924-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02924-0
Loading

Data & Media loading...

Supplements

Majority-rule consensus (parsimony) phylogenetic tree of 16S rRNA gene sequences showing the position of sp. nov. Numbers are bootstrap percentages for 1000 bootstrap replicates. The symbol # indicates the unavailability of a 16S rRNA gene sequence for the corresponding type strain; therefore another strain was used. GenBank accession numbers are given in parentheses. is the outgroup. [PDF](83 KB)

PDF

Major phenotypic characteristics that differentiate phena and strains. [PDF](20 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error