1887

Abstract

A rod-shaped, slightly curved sulfate reducer, designated strain P2, was isolated from the sulfate–methane transition zone of a marine sediment. Cells were motile by means of a single polar flagellum. The strain reduced sulfate, thiosulfate and sulfite to sulfide and used propionate, lactate and 1-propanol as electron donors. Strain P2 also grew by fermentation of lactate. Propionate was oxidized incompletely to acetate and CO. The DNA G+C content was 48·8mol%. Sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P2 was related to the genera , , , ‘’, , and . These genera include incomplete as well as complete oxidizers of substrates. Strain P2 shared important morphological and physiological traits with and , including the ability to oxidize propionate incompletely to acetate. The 16S rRNA gene similarities of P2 to and were respectively 92·9 and 91·5%. Combining phenotypic and genotypic traits, we propose strain P2 to be a member of the genus . The name sp. nov. (type strain P2=DSM 15249=ATCC BAA-815) is proposed, reflecting the limited number of substrates consumed by the strain. In addition, the reclassification of as a member of the genus , comb. nov., is proposed. A common line of descent and a number of shared phenotypic traits support this reclassification.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02820-0
2004-03-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540393.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02820-0&mimeType=html&fmt=ahah

References

  1. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  4. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695
    [Google Scholar]
  5. Devereux R., He S.-H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619
    [Google Scholar]
  6. Finster K., Thomsen T., Ramsing N. B. 2001; Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots. Int J Syst Evol Microbiol 51:2055–2061 [CrossRef]
    [Google Scholar]
  7. Gilbert D. 2002; Seqpup. Freeware available from ftp://iubio.bio.indiana.edu/molbio/seqpup
  8. Isaksen M. F., Finster K. 1996; Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar Ecol Prog Ser 137:187–194 [CrossRef]
    [Google Scholar]
  9. Isaksen M. F., Teske A. 1996; Desulforhopalus vacuolatus gen. nov., sp. nov. a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168 [CrossRef]
    [Google Scholar]
  10. Janssen P. H., Schink B. 1995a; Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus . J Bacteriol 177:277–282
    [Google Scholar]
  11. Janssen P. H., Schink B. 1995b; Pathway of butyrate catabolism by Desulfobacterium cetonicum . J Bacteriol 177:3870–3872
    [Google Scholar]
  12. Knoblauch C., Sahm K., Jørgensen B. B. 1999; Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen.nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643 [CrossRef]
    [Google Scholar]
  13. Kremer D. R., Hansen T. A. 1988; Pathway of propionate degradation in Desulfobulbus propionicus . FEMS Microbiol Lett 49:273–277 [CrossRef]
    [Google Scholar]
  14. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  15. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [CrossRef]
    [Google Scholar]
  16. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  18. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent stain for poly- β -hydroxybutyrate. Appl Environ Microbiol 44:238–241
    [Google Scholar]
  19. Parkes R. J., Dowling N. J. E., White D. C., Herbert R. A., Gibson G. R. 1993; Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. FEMS Microbiol Ecol 102:235–250 [CrossRef]
    [Google Scholar]
  20. Postgate J. R. 1984; Genus Desulfovibrio Kluyver and van Niel 1936, 397AL . In Bergey's Manual of Systematic Bacteriology vol. 1 p.  666–672 Edited by Krieg N. R., Holt J. G. Baltimore: William & Wilkins;
    [Google Scholar]
  21. Rabus R., Hansen T., Widdel F. 2000; Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes release 3–3 New York: Springer; http://www.prokaryotes.com
    [Google Scholar]
  22. Rees G. N., Patel B. K. C. 2001; Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int J Syst Evol Microbiol 51:1911–1916 [CrossRef]
    [Google Scholar]
  23. Stams A. J. M., Veenhuis M., Wenk G. H., Hansen T. A. 1983; Occurrence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus . Arch Microbiol 136:54–59 [CrossRef]
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  25. Visuvanathan S., Moss M. T., Standord J. L., Hermon-Taylor J., McFadden J. J. 1989; Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10:59–64 [CrossRef]
    [Google Scholar]
  26. Wagner M., Roger A. J., Flax J. L., Brusseau G. A., Stahl D. A. 1998; Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982
    [Google Scholar]
  27. Wheeler D. L., Church D. M., Lash A. E. 8 other authors 2002; Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res 30:13–16 [CrossRef]
    [Google Scholar]
  28. Widdel F., Pfennig N. 1982; Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 31:360–365
    [Google Scholar]
  29. Widdel F., Pfennig N. 1984; Dissimilatory sulfate- or sulfur-reducing bacteria. In Bergey's Manual of Systematic Bacteriology vol. 1p– 663 Edited by Krieg N. R., Holt J. G. Baltimore: William & Wilkins;
    [Google Scholar]
  30. Zhang Z., Schwartz S., Wagner L., Miller W. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02820-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02820-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error