1887

Abstract

A rod-shaped, slightly curved sulfate reducer, designated strain P2, was isolated from the sulfate–methane transition zone of a marine sediment. Cells were motile by means of a single polar flagellum. The strain reduced sulfate, thiosulfate and sulfite to sulfide and used propionate, lactate and 1-propanol as electron donors. Strain P2 also grew by fermentation of lactate. Propionate was oxidized incompletely to acetate and CO. The DNA G+C content was 48·8 mol%. Sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P2 was related to the genera , , , ‘’, , and . These genera include incomplete as well as complete oxidizers of substrates. Strain P2 shared important morphological and physiological traits with and , including the ability to oxidize propionate incompletely to acetate. The 16S rRNA gene similarities of P2 to and were respectively 92·9 and 91·5 %. Combining phenotypic and genotypic traits, we propose strain P2 to be a member of the genus . The name sp. nov. (type strain P2=DSM 15249=ATCC BAA-815) is proposed, reflecting the limited number of substrates consumed by the strain. In addition, the reclassification of as a member of the genus , comb. nov., is proposed. A common line of descent and a number of shared phenotypic traits support this reclassification.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02820-0
2004-03-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/2/ijs540393.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02820-0&mimeType=html&fmt=ahah

References

  1. Brosius, J., Dull, T. J., Sleeter, D. D. & Noller, H. F. ( 1981; ). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef]
    [Google Scholar]
  2. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  3. Cline, J. D. ( 1969; ). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef]
    [Google Scholar]
  4. Devereux, R., Delaney, M., Widdel, F. & Stahl, D. A. ( 1989; ). Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171, 6689–6695.
    [Google Scholar]
  5. Devereux, R., He, S.-H., Doyle, C. L., Orkland, S., Stahl, D. A., LeGall, J. & Whitman, W. B. ( 1990; ). Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172, 3609–3619.
    [Google Scholar]
  6. Finster, K., Thomsen, T. & Ramsing, N. B. ( 2001; ). Desulfomusa hansenii gen. nov., sp. nov., a novel marine propionate-degrading, sulfate-reducing bacterium isolated from Zostera marina roots. Int J Syst Evol Microbiol 51, 2055–2061.[CrossRef]
    [Google Scholar]
  7. Gilbert, D. ( 2002; ). Seqpup. Freeware available from ftp://iubio.bio.indiana.edu/molbio/seqpup
  8. Isaksen, M. F. & Finster, K. ( 1996; ). Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar Ecol Prog Ser 137, 187–194.[CrossRef]
    [Google Scholar]
  9. Isaksen, M. F. & Teske, A. ( 1996; ). Desulforhopalus vacuolatus gen. nov., sp. nov. a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166, 160–168.[CrossRef]
    [Google Scholar]
  10. Janssen, P. H. & Schink, B. ( 1995a; ). Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus. J Bacteriol 177, 277–282.
    [Google Scholar]
  11. Janssen, P. H. & Schink, B. ( 1995b; ). Pathway of butyrate catabolism by Desulfobacterium cetonicum. J Bacteriol 177, 3870–3872.
    [Google Scholar]
  12. Knoblauch, C., Sahm, K. & Jørgensen, B. B. ( 1999; ). Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49, 1631–1643.[CrossRef]
    [Google Scholar]
  13. Kremer, D. R. & Hansen, T. A. ( 1988; ). Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol Lett 49, 273–277.[CrossRef]
    [Google Scholar]
  14. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  15. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  16. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  17. Mesbah, M., Premachandran, U. & Whitman, W. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  18. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  19. Parkes, R. J., Dowling, N. J. E., White, D. C., Herbert, R. A. & Gibson, G. R. ( 1993; ). Characterization of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. FEMS Microbiol Ecol 102, 235–250.[CrossRef]
    [Google Scholar]
  20. Postgate, J. R. ( 1984; ). Genus Desulfovibrio Kluyver and van Niel 1936, 397AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, p. 666–672. Edited by N. R. Krieg & J. G. Holt. Baltimore: William & Wilkins.
  21. Rabus, R., Hansen, T. & Widdel, F. ( 2000; ). Dissimilatory sulfate- and sulfur-reducing prokaryotes. In The Prokaryotes, release 3.3. New York: Springer. http://www.prokaryotes.com
  22. Rees, G. N. & Patel, B. K. C. ( 2001; ). Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int J Syst Evol Microbiol 51, 1911–1916.[CrossRef]
    [Google Scholar]
  23. Stams, A. J. M., Veenhuis, M., Wenk, G. H. & Hansen, T. A. ( 1983; ). Occurrence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus. Arch Microbiol 136, 54–59.[CrossRef]
    [Google Scholar]
  24. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  25. Visuvanathan, S., Moss, M. T., Standord, J. L., Hermon-Taylor, J. & McFadden, J. J. ( 1989; ). Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10, 59–64.[CrossRef]
    [Google Scholar]
  26. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. ( 1998; ). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982.
    [Google Scholar]
  27. Wheeler, D. L., Church, D. M., Lash, A. E. & 8 other authors ( 2002; ). Database resources of the National Center for Biotechnology Information: 2002 update. Nucleic Acids Res 30, 13–16.[CrossRef]
    [Google Scholar]
  28. Widdel, F. & Pfennig, N. ( 1982; ). Studies on dissimilatory sulphate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 31, 360–365.
    [Google Scholar]
  29. Widdel, F. & Pfennig, N. ( 1984; ). Dissimilatory sulfate- or sulfur-reducing bacteria. In Bergey's Manual of Systematic Bacteriology, vol. 1, p. 663. Edited by N. R. Krieg & J. G. Holt. Baltimore: William & Wilkins.
  30. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. ( 2000; ). A greedy algorithm for aligning DNA sequences. J Comput Biol 7, 203–214.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02820-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02820-0
Loading

Data & Media loading...

Supplements

Phase-contrast photomicrograph of cells of strain P2 grown on propionate with sulfate as electron donor. Bar, 5 µm.

IMAGE

Phase-contrast photomicrograph of cells of strain P2 grown on propionate with thiosulphate as electron donor. Bar, 5 µm.

IMAGE

Phylogenetic tree showing the affiliation of the DSR amino acid sequence from strain P2 to selected reference sequences of sulphate-reducing bacteria. The tree was calculated by distance analysis with default settings of the distance matrix analysis in PAUP 4.0b10. The sequences of and were used as an outgroup. Numbers at nodes indicate bootstrap values; only values greater than 50 are shown. [PDF](478 KB)

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error