RT Journal Article SR Electronic(1) A1 Abildgaard, Lone A1 Ramsing, Niels Birger A1 Finster, KaiYR 2004 T1 Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov. JF International Journal of Systematic and Evolutionary Microbiology, VO 54 IS 2 SP 393 OP 399 DO https://doi.org/10.1099/ijs.0.02820-0 PB Microbiology Society, SN 1466-5034, AB A rod-shaped, slightly curved sulfate reducer, designated strain P2T, was isolated from the sulfate–methane transition zone of a marine sediment. Cells were motile by means of a single polar flagellum. The strain reduced sulfate, thiosulfate and sulfite to sulfide and used propionate, lactate and 1-propanol as electron donors. Strain P2T also grew by fermentation of lactate. Propionate was oxidized incompletely to acetate and CO2. The DNA G+C content was 48·8mol%. Sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P2T was related to the genera Desulfonema, Desulfococcus, Desulfosarcina, ‘Desulfobotulus’, Desulfofaba, Desulfomusa and Desulfofrigus. These genera include incomplete as well as complete oxidizers of substrates. Strain P2T shared important morphological and physiological traits with Desulfofaba gelida and Desulfomusa hansenii, including the ability to oxidize propionate incompletely to acetate. The 16S rRNA gene similarities of P2T to Desulfofaba gelida and Desulfomusa hansenii were respectively 92·9 and 91·5%. Combining phenotypic and genotypic traits, we propose strain P2T to be a member of the genus Desulfofaba. The name Desulfofaba fastidiosa sp. nov. (type strain P2T=DSM 15249T=ATCC BAA-815T) is proposed, reflecting the limited number of substrates consumed by the strain. In addition, the reclassification of Desulfomusa hansenii as a member of the genus Desulfofaba, Desulfofaba hansenii comb. nov., is proposed. A common line of descent and a number of shared phenotypic traits support this reclassification., UL https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.02820-0