1887

Abstract

A novel species, gen. nov., sp. nov., was isolated from the rhizosphere, roots and stems of salt-tolerant, mangrove-associated wild rice ( Tateoka) using nitrogen-free, semi-solid LGI medium at pH 5·5. Strains were Gram-negative, rod-shaped and motile with peritrichous flagella. The strains grew well in the presence of 0·35 % acetic acid, 3 % NaCl and 1 % KNO, and produced acid from -arabinose, -glucose, glycerol, ethanol, -mannose, -galactose and sorbitol. They oxidized ethanol and grew well on mannitol and glutamate agar. The fatty acids 18 : 17/9/12 and 19 : 0cyclo 8 constituted 30·41 and 11·80 % total fatty acids, respectively, whereas 13 : 1 AT 12–13 was found at 0·53 %. DNA G+C content was 57·6–59·9 mol% and the major quinone was Q-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that these strains were related to the genera , , , , and in the . Isolates were able to fix nitrogen and solubilized phosphate in the presence of NaCl. Based on overall analysis of the tests and comparison with the characteristics of members of the , a novel genus and species is proposed for these isolates, gen. nov., sp. nov. The type strain is PA51 (=LMG 21291=MTCC 3852).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02817-0
2004-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/4/ijs541185.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02817-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Asai, T., Iizuka, H. & Komagata, K. ( 1964; ). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10, 95–126.[CrossRef]
    [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley.
  4. Brosius, J., Dull, T. J., Sleeter, D. D. & Noller, H. F. ( 1981; ). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef]
    [Google Scholar]
  5. Cavalcante, V. A. & Dobereiner, J. ( 1988; ). A new acid-tolerant nitrogen fixing bacterium associated with sugar cane. Plant Soil 108, 23–31.[CrossRef]
    [Google Scholar]
  6. De Ley, J. & Swings, J. ( 1984; ). Genus II Gluconobacter asai 1935, 698AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 275–277. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  7. De Ley, J., Swings, J. & Gassele, F. ( 1984; ). Genus I Acetobacter Beijerinck 1898, 215AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 268–274. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  8. Ezaki, T., Saidi, S. M., Liu, S. L., Hashimoto, Y., Yamamoto, H. & Yabuuchi, E. ( 1990; ). Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. FEMS Microbiol Lett 55, 127–130.
    [Google Scholar]
  9. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  10. Franke, I. H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E. & Sly, L. I. ( 1999; ). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49, 1681–1693.[CrossRef]
    [Google Scholar]
  11. Fuentes-Ramirez, L. E., Bustillos-Cristales, R., Tapia-Hernandez, A., Jimenez-Salgado, T., Wang, E. T., Martinez-Romero, E. & Caballero-Mellado, J. ( 2001; ). Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51, 1305–1314.
    [Google Scholar]
  12. Jimenez-Salgado, T., Fuentes-Ramirez, L. E., Tapia-Hernandez, A., Mascarua-Esparza, M. A., Martinez-Romero, E. & Caballero-Mellado, J. ( 1997; ). Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol 63, 3676–3683.
    [Google Scholar]
  13. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  14. Li, R.-P. & MacRae, I. C. ( 1992; ). Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. Soil Biol Biochem 24, 413–419.[CrossRef]
    [Google Scholar]
  15. Lisdiyanti, P., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Yamada, Y., Uchimura, T. & Komagata, K. ( 2002; ). Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 52, 813–818.[CrossRef]
    [Google Scholar]
  16. Loganathan, P. ( 2002; ). Isolation and characterization of novel salt tolerant nitrogen fixing and phosphate solubilizing bacteria from wild rice – Porteresia coarctata. PhD thesis, Madras University, Chennai, India.
  17. Pikovskaya, R. I. ( 1948; ). Mobilization of phosphorus in soil in connection with the vital activity of some of the microbial species. Mikrobiologiya 17, 362–370.
    [Google Scholar]
  18. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Sokollek, S. J., Hertel, C. & Hammes, W. P. ( 1998; ). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48, 935–940.[CrossRef]
    [Google Scholar]
  20. Swings, J. ( 1992; ). The genera Acetobacter and Gluconobacter. In The Prokaryotes, 2nd edn, pp. 2268–2286. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  21. Swings, J., Gillis, M. & Kersters, K. ( 1992; ). Phenotypic identification of acetic acid bacteria. In Identification Methods in Applied and Environmental Microbiology, pp. 103–110. Edited by R. G. Board, D. Jones & F. A. Skinner. Oxford: Blackwell Scientific.
  22. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal_w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  23. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995; ). Genetic diversity of N2-fixing bacteria associated with rice roots by molecular evolutionary analysis of a nifD library. Can J Microbiol 41, 235–240.[CrossRef]
    [Google Scholar]
  24. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  25. Xu, H.-X., Kawamura, Y., Li, N., Zhao, L., Li, T.-M., Li, Z.-Y., Shu, S. & Ezaki, T. ( 2000; ). A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube. Int J Syst Evol Microbiol 50, 1463–1469.[CrossRef]
    [Google Scholar]
  26. Yamada, Y., Hoshino, K. & Ishikawa, T. ( 1997; ). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61, 1244–1251.[CrossRef]
    [Google Scholar]
  27. Yamada, Y., Katsura, K., Kawasaki, K., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T. & Komagata, K. ( 2000; ). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50, 823–829.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02817-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02817-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1185 - 1190

DNA-DNA similarity between , , and isolates PA12 and PA51 Fatty acid composition/profiles of isolates and type strains of the genera and [Single PDF](140 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error