1887

Abstract

The family is considered to be one of the most diverse and well-studied groups of bacteria. Here, evolution is assessed within the to determine whether multiple origins of eukaryotic associations have occurred within this diverse group of bacteria. Analyses were based on a large molecular dataset, along with a matrix that consisted of 100 biochemical and restriction digest characters. By using direct optimization methods to analyse both datasets individually and in combination, a total-evidence cladogram has been produced, which supports the hypothesis that several important symbionts (both mutualistic and pathogenic) within the are not monophyletic. This leads us to consider that symbiosis (and subsequently, associations with ) has evolved multiple times within the lineage.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02792-0
2003-11-01
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs532019.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02792-0&mimeType=html&fmt=ahah

References

  1. Alsina M., Blanch A. R. 1994; Improvement and update of a set of keys for biochemical identification of Vibrio species. J Appl Bacteriol 77:719–721 [CrossRef]
    [Google Scholar]
  2. Bang S. S., Baumann L., Woolkalis M. J., Baumann P. 1981; Evolutionary relationships in Vibrio and Photobacterium as determined by immunological studies of superoxide dismutase. Arch Microbiol 130:111–120 [CrossRef]
    [Google Scholar]
  3. Baumann P., Baumann L. M., Woolkalis J., Bang S. S. 1983; Evolutionary relationships in Vibrio and Photobacterium : a basis for a natural classification. Annu Rev Microbiol 37:369–398 [CrossRef]
    [Google Scholar]
  4. Bryant T. N., Lee J. V., West P. A., Colwell R. R. 1986; Numerical classification of species of Vibrio and related genera. J Appl Bacteriol 61:437–467 [CrossRef]
    [Google Scholar]
  5. Czyż A., Wróbel B., We˛grzyn G. 2000; Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146:283–288
    [Google Scholar]
  6. Daniels N. A., Shafaie A. 2000; A review of pathogenic Vibrio infections for clinicians. Infect Med 17:665–685
    [Google Scholar]
  7. Davis B. R., Fanning G. R., Madden J. M., Steigerwalt A. G., Bradford H. B. Jr, Smith H. L. Jr, Brenner D. J. 1981; Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus . J Clin Microbiol 14:631–639
    [Google Scholar]
  8. de Pinna M. C. C. 1991; Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394 [CrossRef]
    [Google Scholar]
  9. Dorsch M., Lane D., Stackebrandt E. 1992; Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int J Syst Bacteriol 42:58–63 [CrossRef]
    [Google Scholar]
  10. Farris J. S. 1970; Methods for computing Wagner trees. Syst Zool 19:83–92 [CrossRef]
    [Google Scholar]
  11. Giribet G. 2002; Relationships among metazoan phyla as inferred from 18S rRNA sequence data: a methodological approach. In Molecular Systematics and Evolution: Theory and Practice pp 85–101Edited by DeSalle R., Giribet G., Wheeler W. C. Basel, Switzerland: Birkhäuser;
    [Google Scholar]
  12. Giribet G., Wheeler W. C. 2002; On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebr Biol 121:271–324
    [Google Scholar]
  13. Giribet G., Edgecombe G. D., Wheeler W. C. 2001; Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161 [CrossRef]
    [Google Scholar]
  14. Goloboff P. A. 1999; Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428 [CrossRef]
    [Google Scholar]
  15. Kita-Tsukamoto K., Oyaizu H., Nanba K., Simidu U. 1993; Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae , determined on the basis of 16S rRNA sequences. Int J Syst Bacteriol 43:8–19 [CrossRef]
    [Google Scholar]
  16. Kluge A. G. 1989; A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes. Syst Zool 38:7–25 [CrossRef]
    [Google Scholar]
  17. Koropatnick T., Estrada A., Apicella M. A., McFall-Ngai M. J. 2001; Messengers or mercenaries? Characterizing the role of macrophage-like hemocytes in the bacteria-induced morphogenesis of the juvenile light organ of Euprymna scolopes . Am Zool 411496 (abstract no. P1.24)
    [Google Scholar]
  18. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  19. Maddison D. R., Maddison W. P. 2002 MacClade Sunderland, MD: Sinauer Associates;
    [Google Scholar]
  20. Makino K., Oshima K., Kurokawa K. 14 other authors 2003; Genome sequence of Vibrio parahaemolyticus : a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749 [CrossRef]
    [Google Scholar]
  21. Martin-Kearley J., Gow J. A. 1994; Numerical taxonomy of Vibrionaceae from Newfoundland coastal waters. Can J Microbiol 40:355–361 [CrossRef]
    [Google Scholar]
  22. McFall-Ngai M. J. 1999; Consequences of evolving with bacterial symbionts: lessons from the squid-vibrio association. Annu Rev Ecol Syst 30:235–256 [CrossRef]
    [Google Scholar]
  23. Moran N. A., Wernegreen J. J. 2000; Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326 [CrossRef]
    [Google Scholar]
  24. Nearhos S. P., Fuerst J. A. 1987; Reanalysis of 5S rRNA sequence data for the Vibrionaceae with the Clustan Program Suite. Curr Microbiol 15:329–335 [CrossRef]
    [Google Scholar]
  25. Nishiguchi M. K. 2000; Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl Environ Microbiol 66:3550–3555 [CrossRef]
    [Google Scholar]
  26. Nishiguchi M. K. 2001; Co-evolution of symbionts and hosts: the sepiolid- Vibrio model. In Symbiosis: Mechanisms and Model Systems pp 757–774Edited by Seckbach J. Dordrecht, the Netherlands: Kluwer;
    [Google Scholar]
  27. Nishiguchi M. K. 2002; Host–symbiont recognition in the environmentally transmitted sepiolid squid– Vibrio mutualism. Microb Ecol 44:10–18 [CrossRef]
    [Google Scholar]
  28. Nishiguchi M. K., Jones B. W. 2003; Microbial biodiversity within the Vibrionaceae . In Origins, Evolution, and the Biodiversity of Microbial Life Edited by Seckback J. Dordrecht, the Netherlands: Kluwer; in press
    [Google Scholar]
  29. Nishiguchi M. K., Ruby E. G., McFall-Ngai M. J. 1998; Competitive dominance among strains of luminous bacteria provides an unusual form of evidence for parallel evolution in sepiolid squid-vibrio symbioses. Appl Environ Microbiol 64:3209–3213
    [Google Scholar]
  30. Nyholm S. V., Stabb E. V., Ruby E. G., McFall-Ngai M. J. 2000; Establishment of an animal–bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci U S A 97:10231–10235 [CrossRef]
    [Google Scholar]
  31. Reich K. A., Schoolnik G. K. 1994; The light organ symbiont Vibrio fischeri possesses a homolog of the Vibrio cholerae transmembrane transcriptional activator ToxR. J Bacteriol 176:3085–3088
    [Google Scholar]
  32. Reich K. A., Schoolnik G. K. 1996; Halovibrin, secreted from the light organ symbiont Vibrio fischeri , is a member of a new class of ADP-ribosyltransferases. J Bacteriol 178:209–215
    [Google Scholar]
  33. Reich K. A., Biegel T., Schoolnik G. K. 1997; The light organ symbiont Vibrio fischeri possesses two distinct secreted ADP-ribosyltransferases. J Bacteriol 179:1591–1597
    [Google Scholar]
  34. Ruby E. G. 1999a; Ecology of a benign “infection”: colonization of the squid luminous organ by Vibrio fischeri . In Microbial Ecology and Infectious Disease pp 217–231Edited by Rosenberg E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Ruby E. G. 1999b; The Euprymna scolopes-Vibrio fischeri symbiosis: a biomedical model for the study of bacterial colonization of animal tissue. J Mol Microbiol Biotechnol 1:13–21
    [Google Scholar]
  36. Ruby E. G., Asato L. M. 1993; Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch Microbiol 159:160–167 [CrossRef]
    [Google Scholar]
  37. Ruby E. G., Lee K.-H. 1998; The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl Environ Microbiol 64:805–812
    [Google Scholar]
  38. Ruimy R., Breittmayer V., Elbaze P., Lafay B., Boussemart O., Gauthier M., Christen R. 1994; Phylogenetic analysis and assessment of the genera Vibrio , Photobacterium , Aeromonas , and Plesiomonas deduced from small-subunit rRNA sequences. Int J Syst Bacteriol 44:416–426 [CrossRef]
    [Google Scholar]
  39. Schjørring S., Koella J. C. 2003; Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc R Soc Lond B Biol Sci 270:189–193 [CrossRef]
    [Google Scholar]
  40. Stabb E. V., Ruby E. G. 2003; Contribution of pilA to competitive colonization of the squid Euprymna scolopes by Vibrio fischeri . Appl Environ Microbiol 69:820–826 [CrossRef]
    [Google Scholar]
  41. Stabb E. V., Reich K. A., Ruby E. G. 2001; Vibrio fischeri genes hvnA and hvnB encode secreted NAD+-glycohydrolases. J Bacteriol 183:309–317 [CrossRef]
    [Google Scholar]
  42. Stewart J. J., Nyholm S. V., McFall-Ngai M. J. 2001; Squid hemocytes are able to discriminate the specific symbiont from other types of bacteria. Am Zool 41:1595–1596 (abstract no. 62.3:
    [Google Scholar]
  43. Swofford D. L. 2002 paup*: Phylogenetic Analysis Using Parsimony (*and other methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  44. Urakawa H., Kita-Tsukamoto K., Ohwada K. 1997; 16S rDNA genotyping using PCR/RFLP (restriction fragment length polymorphism) analysis among the family Vibrionaceae . FEMS Microbiol Lett 152:125–132 [CrossRef]
    [Google Scholar]
  45. Urakawa H., Kita-Tsukamoto K., Ohwada K. 1999; Restriction fragment length polymorphism analysis of psychrophilic and psychrotrophic Vibrio and Photobacterium from the north-western Pacific Ocean and Otsuchi Bay, Japan. Can J Microbiol 45:67–76 [CrossRef]
    [Google Scholar]
  46. Wheeler W. C. 1995; Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst Biol 44:321–331 [CrossRef]
    [Google Scholar]
  47. Wheeler W. C. 1996; Optimization alignment: the end of multiple sequence alignment in phylogenetics?. Cladistics 12:1–9 [CrossRef]
    [Google Scholar]
  48. Wheeler W. C. 1998; Alignment characters, dynamic programming and heuristic solutions. In Molecular Approaches to Ecology and Evolution vol 1 pp 243–251Edited by DeSalle R., Schierwater B. Basel, Switzerland: Birkhäuser Verlag;
    [Google Scholar]
  49. Wheeler W. C., Hayashi C. Y. 1998; The phylogeny of extant chelicerate orders. Cladistics 14:173–192 [CrossRef]
    [Google Scholar]
  50. Wheeler W. C., Gladstein D. S., DeLaet J. 2002 poy: the optimization of alignment characters New York: American Museum of Natural History;
    [Google Scholar]
  51. Wiik R., Stackebrandt E., Valle O., Daae F. L., Rødseth O. M., Andersen K. 1995; Classification of fish-pathogenic vibrios based on comparative 16S rRNA analysis. Int J Syst Bacteriol 45:421–428 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02792-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02792-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2019 – 2026

Biochemical and restriction digest dataset used in the phylogenetic analyses [PDF](132 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error