1887

Abstract

A Gram-negative, rod-shaped, non-spore-forming bacterium (MH96) was isolated from diseased larvae of the New Zealand grass grub, (Coleoptera: Scarabaeidae). On the basis of 16S rRNA gene sequence similarity, strain MH96 is a member of the genus , which is a member of the class . The most similar 16S rRNA gene sequence to that of MH96 is that of the type strain of (98.5 % similarity) followed by those of the type strains of , and (all 98.4 % similarity). Multilocus sequence typing of five housekeeping genes (, , , and ) identified (81–92 % similarity) as the closest relative. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain MH96 from the four most closely related species with validly published names, including a isolate. Strain MH96 therefore represents a novel species, for which the name sp. nov. is proposed, with the type strain MH96 ( = DSM 22339  = ATCC BAA-1678).

Funding
This study was supported by the:
  • , Foundation for Research Science Technology , (Award N10X0310)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024406-0
2011-04-01
2020-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/844.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024406-0&mimeType=html&fmt=ahah

References

  1. Bercovier H., Mollaret H. H. 1984; Genus XIV. Yersinia Van Loghem 1944, 15AL . In Bergey’s Manual of Systematic Bacteriology vol. 1 pp. 498–506 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Bercovier H., Ursing J., Brenner D. J., Steigerwaldt A. G., Fanning G. R., Carter G. P., Mollaret H. H. 1980; Yersinia kristensenii: a new species of Enterobacteriaceae composed of sucrose negative strains (formerly called atypical Yersinia enterocolitica or Yersinia enterocolitica-like). Curr Microbiol 4:219–224 [CrossRef]
    [Google Scholar]
  3. Bottone E. J. 1997; Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev 10:257–276[PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  5. Chevenet F., Brun C., Bañuls A. L., Jacq B., Christen R. 2006; TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7:439 [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Deloger M., El Karoui M., Petit M.-A. 2009; A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 191:91–99 [CrossRef][PubMed]
    [Google Scholar]
  8. Demarta A., De Respinis S., Dolina M., Peduzzi R. 2004; Molecular typing of Yersinia frederiksenii strains by means of 16S rDNA and gyrB genes sequence analyses. FEMS Microbiol Lett 238:423–428[PubMed]
    [Google Scholar]
  9. Ewing W. H. A., Ross A. J., Brenner D. J., Fanning G. R. 1978; Yersinia ruckeri sp. nov., the redmouth (RM) bacterium. Int J Syst Bacteriol 28:37–44 [CrossRef]
    [Google Scholar]
  10. Felsenstein, J. (2005). phylip (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef][PubMed]
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Konstantinidis K. T., Tiedje J. M. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  16. Kotetishvili M., Kreger A., Wauters G., Morris J. G. Jr, Sulakvelidze A., Stine O. C. 2005; Multilocus sequence typing for studying genetic relationships among Yersinia species. J Clin Microbiol 43:2674–2684 [CrossRef][PubMed]
    [Google Scholar]
  17. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A. 2008; Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214 [CrossRef][PubMed]
    [Google Scholar]
  18. Merhej V., Adékambi T., Pagnier I., Raoult D., Drancourt M. 2008; Yersinia massiliensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 58:779–784 [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Neubauer H., Molitor M., Rahalison L., Aleksic S., Backes H., Chanteau S., Meyer H. 2000; A miniaturised semiautomated system for the identification of Yersinia species within the genus Yersinia . Clin Lab 46:561–567[PubMed]
    [Google Scholar]
  21. Perry R. D., Fetherston J. D. 1997; Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10:35–66[PubMed]
    [Google Scholar]
  22. Posada D. 2006; ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:W700–W703 [CrossRef][PubMed]
    [Google Scholar]
  23. Rice P., Longden I., Bleasby A. 2000; emboss: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  25. Singh P. 1983; A general purpose laboratory diet mixture for rearing insects. Insect Sci Appl 4:357–362
    [Google Scholar]
  26. Smith P. B., Hancock G. A., Rhoden D. L. 1969; Improved medium for detecting deoxyribonuclease-producing bacteria. Appl Microbiol 18:991–993[PubMed]
    [Google Scholar]
  27. Sprague L. D., Neubauer H. 2005; Yersinia aleksiciae sp. nov.. Int J Syst Evol Microbiol 55:831–835 [CrossRef][PubMed]
    [Google Scholar]
  28. Sprague L. D., Scholz H. C., Amann S., Busse H.-J., Neubauer H. 2008; Yersinia similis sp. nov.. Int J Syst Evol Microbiol 58:952–958 [CrossRef][PubMed]
    [Google Scholar]
  29. Spröer C., Reichenbach H., Stackebrandt E. 1999; The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49:1255–1262 [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp. 151–194 Edited by O’Donnell A. G. London: Academic Press;
    [Google Scholar]
  32. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. et al. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  33. Starr M. P., Grimont P. A. D., Grimont F., Starr P. B. 1976; Caprylate-thallous agar medium for selectively isolating Serratia and its utility in the clinical laboratory. J Clin Microbiol 4:270–276[PubMed]
    [Google Scholar]
  34. Sulakvelidze A. 2000; Yersiniae other than Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis: the ignored species. Microbes Infect 2:497–513 [CrossRef][PubMed]
    [Google Scholar]
  35. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  37. Woese C. R., Fox G. E. 1977; Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090 [CrossRef][PubMed]
    [Google Scholar]
  38. Xia X., Lemey P. 2009; Assessing substitution saturation with DAMBE. In The Phylogenetic Handbook pp. 611–626 Edited by Lemey P. Cambridge: Cambridge University Press;
    [Google Scholar]
  39. Zharkikh A. 1994; Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024406-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024406-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error