1887

Abstract

Two bacterial strains isolated from the Baltic Sea, OS145 and OS146, were characterized on the basis of their physiological and biochemical features, their fatty acid profiles and their phylogenetic position based on 16S rDNA sequence analyses. The strains were isolated from the upper oxic water column of the central Baltic Sea. Phylogenetic analyses of the 16S rDNA gene sequences revealed a clear affiliation of the novel strains with members of the genus , of the . Closest sequence similarity was seen with and (95–96 %). The mean G+C content of the DNA of strains OS145 and OS146 was 49·7 mol%. Both strains were non-pigmented, Gram-negative, polarly flagellated organisms that were strictly aerobic. Growth of the strains was observed at salinities ranging from 0·8 to 10 % NaCl. Temperature range for growth was rather broad and high for marine bacteria: both strains grew between 8 and 46 °C, showed good growth between 20 and 44 °C, and had an optimum between 30 and 40 °C. The fatty acids of the two strains were dominated by iso-branched fatty acids (54–80 %), with a high abundance of C (36 %), C, C and C. Growth temperature (8–40 °C) influenced the fatty acid composition of the strains in a way that the content of iso-branching fatty acids increased with increasing temperatures, while the mono-unsaturated fatty acids increased with decreasing temperatures. Salinity (1·7–10 % NaCl) had only a minor effect on the fatty acid composition. According to their morphology, physiology, fatty acid composition and 16S rDNA sequences, strains OS145 and OS146 fitted well into the genus , but could be easily distinguished from the recognized species of the genus. Because of their unique nature, it is proposed that the strains isolated from the Baltic Sea represent a novel species, for which the name (type strain OS145=DSM 15154 =LMG 21691) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02399-0
2003-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530407.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02399-0&mimeType=html&fmt=ahah

References

  1. Annous, B. A., Becker, L. A., Bayles, D. O., Labeda, D. P. & Wilkinson, B. J. ( 1997; ). Critical role of anteiso-C15 : 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63, 3887–3894.
    [Google Scholar]
  2. Berry, V. & Gascuel, O. ( 1996; ). Interpretation of bootstrap trees: threshold of clade selection and induced gain. Mol Biol Evol 13, 999–1011.[CrossRef]
    [Google Scholar]
  3. Bozal, N., Montes, M. J., Tudela, E., Jimenez, F. & Guinea, J. ( 2002; ). Shewanella frigidimarina and Shewanella livingstonensis sp. nov., isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52, 195–205.
    [Google Scholar]
  4. Brettar, I. & Höfle, M. G. ( 1993; ). Nitrous oxide producing heterotrophic bacteria from the water column of the central Baltic: abundance and molecular identification. Mar Ecol Prog Ser 94, 253–265.[CrossRef]
    [Google Scholar]
  5. Brettar, I. & Rheinheimer, G. ( 1991; ). Denitrification in the Central Baltic: evidence for H2S-oxidation as motor of denitrification at the oxic–anoxic interface. Mar Ecol Prog Ser 77, 157–169.[CrossRef]
    [Google Scholar]
  6. Brettar, I. & Rheinheimer, G. ( 1992; ). Influence of carbon availability on denitrification in the water column of the central Baltic. Limnol Oceanogr 37, 1146–1163.[CrossRef]
    [Google Scholar]
  7. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  8. Cottrell, M. T., Wood, D. N., Yu, L. & Kirchman, D. L. ( 2000; ). Selected chitinase genes in cultured and uncultured marine bacteria in the α- and γ-subclasses of the Proteobacteria. Appl Environ Microbiol 66, 1195–1201.[CrossRef]
    [Google Scholar]
  9. De Ley, J., Cattoir, H. & Reynarts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  10. Dye, D. W. ( 1968; ). A taxonomic study of the genus Erwinia. N Z J Sci 11, 590–607.
    [Google Scholar]
  11. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability of renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1995; ). phylip (phylogeny inference package), version 3.57c. Department of Genetics, University of Washington, Seattle, USA.
  13. Finkmann, W., Altendorf, K., Stackebrandt, E. & Lipski, A. ( 2000; ). Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50, 273–282.[CrossRef]
    [Google Scholar]
  14. Gascuel, O. ( 1997; ). bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14, 685–695.[CrossRef]
    [Google Scholar]
  15. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  16. Höfle, M. G. & Brettar, I. ( 1995; ). Taxonomic diversity and metabolic activity of microbial communities in the water column of the central Baltic Sea. Limnol Oceanogr 40, 868–874.[CrossRef]
    [Google Scholar]
  17. Höfle, M. G. & Brettar, I. ( 1996; ). Genotyping of heterotrophic bacteria from the central Baltic sea by use of low-molecular-weight RNA profiles. Appl Environ Microbiol 62, 1383–1390.
    [Google Scholar]
  18. Huss, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  19. Ivanova, E. P., Romanenko, L. A., Chun, J. & 7 other authors ( 2000; ). Idiomarina gen. nov., comprising novel deep-sea bacteria from the Pacific Ocean, including description of two species, Idiomarina abyssalis sp. nov. and Idiomarina zobellii sp. nov. Int J Syst Evol Microbiol 50, 901–907.[CrossRef]
    [Google Scholar]
  20. Jahnke, K. D. ( 1992; ). Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD system 2600 spectrometer on a PC/XT/AT type PC. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  21. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  22. Kato, C., Li, L., Tamaoka, J. & Horikoshi, K. ( 1997; ). Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles 1, 117–123.[CrossRef]
    [Google Scholar]
  23. Klein, W., Weber, M. H. & Marahiel, M. A. ( 1999; ). Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181, 5341–5349.
    [Google Scholar]
  24. Li, L., Kato, C. & Horikoshi, K. ( 1999; ). Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8, 659–677.[CrossRef]
    [Google Scholar]
  25. Lopez, C. S., Heras, H., Ruzal, S. M., Sanchez-Rivas, C. & Rivas, E. A. ( 1998; ). Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr Microbiol 36, 55–61.[CrossRef]
    [Google Scholar]
  26. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurements of the G+C content of the deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  27. Moore, E. R. B., Mau, M., Arnscheidt, A., Böttger, E. C., Hutson, R. A., Collins, M. D., Van De Peer, Y., De Wachter, R. & Timmis, K. N. ( 1996; ). The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19, 476–492.
    [Google Scholar]
  28. Moore, E. R. B., Arnscheidt, A., Krüger, A., Strömpl, C. & Mau, M. ( 1999; ). Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual, 1.6.1, pp. 1–15. Edited by A. D. L. Akkermans, J. D. van Elsas & F. J. de Bruijn. Dordrecht: Kluwer Academic.
  29. Mullis, K. B. & Faloona, F. A. ( 1987; ). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155, 335–350.
    [Google Scholar]
  30. Oppenheimer, C. H. & ZoBell, C. E. ( 1952; ). The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res 11, 10–18.
    [Google Scholar]
  31. Perrière, G. & Gouy, M. ( 1996; ). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369.[CrossRef]
    [Google Scholar]
  32. Rahmati-Bahram, A., Magee, J. T. & Jackson, S. K. ( 1995; ). Growth temperature-dependent variation of cell envelope lipids and antibiotic susceptibility in Stenotrophomonas (Xanthomonas) maltophila. J Antimicrob Chemother 36, 317–326.[CrossRef]
    [Google Scholar]
  33. Sasser, M. ( 1990; ). Identification of bacteria by the gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc.
  34. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  35. Teske, A., Brinkhoff, T., Muyzer, G., Moser, D. P., Rethmeier, J. & Jannasch, H. W. ( 2000; ). Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66, 3125–3133.[CrossRef]
    [Google Scholar]
  36. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  37. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosello-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02399-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02399-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 407-413

Additional phenotypic (Table 1a) and fatty acid (Table 2a) data for are available in a PDF file when you click on this link.



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error