1887

Abstract

Three novel species are described on the basis of phenotypic, chemotaxonomic and phylogenetic studies. A total of six novel halophilic, aerobic organisms with the ability to produce eicosapentaenoic acid (EPA) were isolated from various sea animals in Japan. Cells of all six isolates were Gram-negative, rod-shaped and motile by means of polar flagella. They were able to produce large amounts of EPA (about 20 % of the total fatty acids) and had isoprenoid quinones Q-7 and Q-8 as major components. Analysis of the nearly complete 16S rRNA gene sequences of the novel isolates showed that they are very close phylogenetically (sequence similarity >99 %) and the closest species was , with 97 % sequence similarity. However, analysis of sequences indicated that the novel isolates were divided into three groups at sufficient phylogenetic distance to indicate that they are different species (<90 % sequence similarity). DNA–DNA hybridization experiments supported this conclusion. The first group (three strains) had positive reactions for lipase, DNase, ONPG and trimethylamine oxide (TMAO) reduction and had G+C contents of 43 mol% (determined by HPLC). The second group (two strains) was positive for urease, DNase, ONPG and TMAO reduction but not lipase. Their G+C content was 45 mol%. The third group (one strain) was negative for ONPG, DNase and TMAO reduction and had a G+C content of 43 mol%. Strains of the second group, but not those of the first or third groups, grew at 32 °C. On the basis of the polyphasic taxonomic data, the novel strains isolated from intestines of sea animals are placed in three novel species of the genus : sp. nov. (type strain: JCM 11558=LMG 21403), sp. nov. (type strain: JCM 11561=LMG 21406) and sp. nov. (type strain: JCM 11563=LMG 21408).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02392-0
2003-03-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530491.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02392-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita M., Itoh T., Katayama Y., Kuraishi H., Yamasato K. 1992; Isoprenoid quinone composition of some marine Alteromonas , Marinomonas , Deleya , Pseudomonas and Shewanella species. J Gen Microbiol 138:2275–2281 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429
    [Google Scholar]
  4. Baumann P., Gauthier M. J., Baumann L. 1984; Genus Alteromonas Baumann, Baumann, Mandel and Allen 1972, 418AL. In Bergey's Manual of Systematic Bacteriology vol 1 pp 343–352Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov. novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  6. Bowman J. P., Gosink J. J., McCammon S. A., Lewis T. E., Nichols D. S., Nichols P. D., Skerratt J. H., Staley J. T., McMeekin T. A. 1998; Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6 ω 3). Int J Syst Bacteriol 481171–1180 [CrossRef]
    [Google Scholar]
  7. Bozal N., Montes M. J., Tudela E., Jiménez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205
    [Google Scholar]
  8. Conn H. J., Bartholomew J. W., Jennison M. W. 1957; Staining methods. In Manual of Microbiological Methods pp 10–36 Edited by Society of American Bacteriologists; New York: McGraw-Hill;
    [Google Scholar]
  9. DeLong E. F., Yayanos A. A. 1985; Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103 [CrossRef]
    [Google Scholar]
  10. Edgell D. R., Klenk H.-P., Doolittle W. F. 1997; Gene duplications in evolution of archaeal family B DNA polymerases. J Bacteriol 179:2632–2640
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1995 phylip (Phylogeny Inference Package), version 3.57c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  13. Folch J., Lees M., Sloane Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
    [Google Scholar]
  14. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  15. Gauthier M. J., Breittmayer V. A. 1992; The genera Alteromonas and Marinomonas . In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications . , 2nd edn. vol 4 pp 3046–3070Edited by Balows A., Trüper H. G., Dworkin M., Harder W. K.-H. Schleifer, New York: Springer;
  16. Gauthier G., Gauthier M., Christen R. 1995; Phylogenetic analysis of the genera Alteromonas , Shewanella , and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761 [CrossRef]
    [Google Scholar]
  17. Holt J. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T.editors 1994 Bergey's Manual of Determinative Bacteriology , 9th edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  18. Ivanova E. P., Sawabe T., Gorshkova N. M., Svetashev V. I., Mikhailov V. V., Nicolau D. V., Christen R. 2001; Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033 [CrossRef]
    [Google Scholar]
  19. Johns R. B., Perry G. J. 1977; Lipids of the bacterium Flexibacter polymorphus . Arch Microbiol 114:267–271 [CrossRef]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  21. Leonardo M. R., Moser D. P., Barbieri E., Brantner C. A., MacGregor B. J., Paster B. J., Stackebrandt E., Nealson K. H. 1999; Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei . Int J Syst Bacteriol 49:1341–1351 [CrossRef]
    [Google Scholar]
  22. MacDonell M. T., Colwell R. R. 1985; Phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  23. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. F., Widder E. A., Case J. F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039 [CrossRef]
    [Google Scholar]
  24. Morse R., Collins M. D., O'Hanlon K., Wallbanks S., Richardson P. T. 1996; Analysis of the β ′ subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos ) is a tachytelic (fast-evolving) bacterium. Int J Syst Bacteriol 46:1004–1009 [CrossRef]
    [Google Scholar]
  25. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321 [CrossRef]
    [Google Scholar]
  26. Nealson K. H., Myers C. R., Wimpee B. 1991; Isolation and identification of manganese reducing bacteria, and estimates of microbial manganese reducing potential in Black Sea. Deep Sea Res 38:S907–S920 [CrossRef]
    [Google Scholar]
  27. Nogi Y., Kato C., Horikoshi K. 1998; Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170:331–338 [CrossRef]
    [Google Scholar]
  28. Nozue H., Hayashi T., Hashimoto Y., Ezaki T., Hamasaki K., Ohwada K., Terawaki Y. et al. 1992; Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu, et al. 1990, 335. Int J Syst Bacteriol 42:628–634 [CrossRef]
    [Google Scholar]
  29. Russell N. J., Nichols D. S. 1999; Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145:767–779 [CrossRef]
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Satomi M., Kimura B., Mizoi M., Sato T., Fujii T. 1997; Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836 [CrossRef]
    [Google Scholar]
  33. Semple K. M., Westlake D. W. S. 1987; Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 33:366–371 [CrossRef]
    [Google Scholar]
  34. Simidu U., Kita-Tsukamoto K., Yasumoto T., Yotsu M. 1990; Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40:331–336 [CrossRef]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  37. Stenström I.-M., Molin G. 1990; Classification of the spoilage flora of fish, with special reference to Shewanella putrefaciens . J Appl Bacteriol 68:601–618 [CrossRef]
    [Google Scholar]
  38. Takewaki S., Okuzumi K., Manabe I., Tanimura M., Miyamura K., Nakahara K., Yazaki Y., Ohkubo A., Nagai R. 1994; Nucleotide sequence comparison of the mycobacterial dnaJ gene and PCR-restriction fragment length polymorphism analysis for identification of mycobacterial species. Int J Syst Bacteriol 44:159–166 [CrossRef]
    [Google Scholar]
  39. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  41. Venkateswaran K., Dohmoto N., Harayama S. 1998a; Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol 64:681–687
    [Google Scholar]
  42. Venkateswaran K., Dollhopf M. E., Aller R., Stackebrandt E., Nealson K. H. 1998b; Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48:965–972 [CrossRef]
    [Google Scholar]
  43. Venkateswaran K., Moser D. P., Dollhopf M. E.10 other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  44. Viale A. M., Arakaki A. K., Soncini F. C., Ferreyra R. G. 1994; Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int J Syst Bacteriol 44:527–533 [CrossRef]
    [Google Scholar]
  45. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  46. Weiner R. M., Coyne V. E., Brayton P., West P., Raiken S. F. 1988; Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int J Syst Bacteriol 38:240–244 [CrossRef]
    [Google Scholar]
  47. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  48. West P. A., Colwell R. R. 1984; Identification and classification of the Vibrionaceae – an overview. In Vibrios in the Environment pp 285–363Edited by Colwell R. R. New York: Wiley;
    [Google Scholar]
  49. Wilkinson S. G. 1988; Gram-negative bacteria. In Microbial Lipids vol 1 pp 299–488Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  50. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  51. Yamamoto S., Harayama S. 1996; Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46:506–511 [CrossRef]
    [Google Scholar]
  52. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB , rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [CrossRef]
    [Google Scholar]
  53. Yano Y., Nakayama A., Saito H., Ishihara K. 1994; Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29:527–528 [CrossRef]
    [Google Scholar]
  54. Yano Y., Nakayama A., Yoshida K. 1997; Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577
    [Google Scholar]
  55. Yazawa K. 1996; Production of eicosapentaenoic acid from marine bacteria. Lipids 31:SupplS297–S300 [CrossRef]
    [Google Scholar]
  56. Yazawa K., Araki K., Watanabe K., Ishikawa C., Inoue A., Kondo K., Watanabe S., Hashimoto K. 1988; Eicosapentaenoic acid productivity of the bacteria isolated from fish intestines. Nippon Suisan Gakkaishi 54:1835–1838 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02392-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02392-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error