1887

Abstract

Three novel species are described on the basis of phenotypic, chemotaxonomic and phylogenetic studies. A total of six novel halophilic, aerobic organisms with the ability to produce eicosapentaenoic acid (EPA) were isolated from various sea animals in Japan. Cells of all six isolates were Gram-negative, rod-shaped and motile by means of polar flagella. They were able to produce large amounts of EPA (about 20 % of the total fatty acids) and had isoprenoid quinones Q-7 and Q-8 as major components. Analysis of the nearly complete 16S rRNA gene sequences of the novel isolates showed that they are very close phylogenetically (sequence similarity >99 %) and the closest species was , with 97 % sequence similarity. However, analysis of sequences indicated that the novel isolates were divided into three groups at sufficient phylogenetic distance to indicate that they are different species (<90 % sequence similarity). DNA–DNA hybridization experiments supported this conclusion. The first group (three strains) had positive reactions for lipase, DNase, ONPG and trimethylamine oxide (TMAO) reduction and had G+C contents of 43 mol% (determined by HPLC). The second group (two strains) was positive for urease, DNase, ONPG and TMAO reduction but not lipase. Their G+C content was 45 mol%. The third group (one strain) was negative for ONPG, DNase and TMAO reduction and had a G+C content of 43 mol%. Strains of the second group, but not those of the first or third groups, grew at 32 °C. On the basis of the polyphasic taxonomic data, the novel strains isolated from intestines of sea animals are placed in three novel species of the genus : sp. nov. (type strain: JCM 11558=LMG 21403), sp. nov. (type strain: JCM 11561=LMG 21406) and sp. nov. (type strain: JCM 11563=LMG 21408).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02392-0
2003-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530491.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02392-0&mimeType=html&fmt=ahah

References

  1. Akagawa-Matsushita, M., Itoh, T., Katayama, Y., Kuraishi, H. & Yamasato, K. ( 1992; ). Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 138, 2275–2281.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Baumann, L., Baumann, P., Mandel, M. & Allen, R. D. ( 1972; ). Taxonomy of aerobic marine eubacteria. J Bacteriol 110, 402–429.
    [Google Scholar]
  4. Baumann, P., Gauthier, M. J. & Baumann, L. ( 1984; ). Genus Alteromonas Baumann, Baumann, Mandel and Allen 1972, 418AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 343–352. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  5. Bowman, J. P., McCammon, S. A., Nichols, D. S., Skerratt, J. H., Rea, S. M., Nichols, P. D. & McMeekin, T. A. ( 1997; ). Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47, 1040–1047.[CrossRef]
    [Google Scholar]
  6. Bowman, J. P., Gosink, J. J., McCammon, S. A., Lewis, T. E., Nichols, D. S., Nichols, P. D., Skerratt, J. H., Staley, J. T. & McMeekin, T. A. ( 1998; ). Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6ω3). Int J Syst Bacteriol 48, 1171–1180.[CrossRef]
    [Google Scholar]
  7. Bozal, N., Montes, M. J., Tudela, E., Jiménez, F. & Guinea, J. ( 2002; ). Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52, 195–205.
    [Google Scholar]
  8. Conn, H. J., Bartholomew, J. W. & Jennison, M. W. ( 1957; ). Staining methods. In Manual of Microbiological Methods, pp. 10–36. Edited by Society of American Bacteriologists. New York: McGraw-Hill.
  9. DeLong, E. F. & Yayanos, A. A. ( 1985; ). Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228, 1101–1103.[CrossRef]
    [Google Scholar]
  10. Edgell, D. R., Klenk, H.-P. & Doolittle, W. F. ( 1997; ). Gene duplications in evolution of archaeal family B DNA polymerases. J Bacteriol 179, 2632–2640.
    [Google Scholar]
  11. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1995; ). phylip (Phylogeny Inference Package), version 3.57c. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.
  13. Folch, J., Lees, M. & Sloane Stanley, G. H. ( 1957; ). A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497–509.
    [Google Scholar]
  14. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  15. Gauthier, M. J. & Breittmayer, V. A. ( 1992; ). The genera Alteromonas and Marinomonas. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, vol. 4, pp. 3046–3070. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer, New York: Springer.
  16. Gauthier, G., Gauthier, M. & Christen, R. ( 1995; ). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45, 755–761.[CrossRef]
    [Google Scholar]
  17. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. (editors) ( 1994; ). Bergey's Manual of Determinative Bacteriology, 9th edn. Baltimore: Williams & Wilkins.
  18. Ivanova, E. P., Sawabe, T., Gorshkova, N. M., Svetashev, V. I., Mikhailov, V. V., Nicolau, D. V. & Christen, R. ( 2001; ). Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51, 1027–1033.[CrossRef]
    [Google Scholar]
  19. Johns, R. B. & Perry, G. J. ( 1977; ). Lipids of the bacterium Flexibacter polymorphus. Arch Microbiol 114, 267–271.[CrossRef]
    [Google Scholar]
  20. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  21. Leonardo, M. R., Moser, D. P., Barbieri, E., Brantner, C. A., MacGregor, B. J., Paster, B. J., Stackebrandt, E. & Nealson, K. H. ( 1999; ). Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol 49, 1341–1351.[CrossRef]
    [Google Scholar]
  22. MacDonell, M. T. & Colwell, R. R. ( 1985; ). Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6, 171–182.[CrossRef]
    [Google Scholar]
  23. Makemson, J. C., Fulayfil, N. R., Landry, W., Van Ert, L. M., Wimpee, C. F., Widder, E. A. & Case, J. F. ( 1997; ). Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47, 1034–1039.[CrossRef]
    [Google Scholar]
  24. Morse, R., Collins, M. D., O'Hanlon, K., Wallbanks, S. & Richardson, P. T. ( 1996; ). Analysis of the β′ subunit of DNA-dependent RNA polymerase does not support the hypothesis inferred from 16S rRNA analysis that Oenococcus oeni (formerly Leuconostoc oenos) is a tachytelic (fast-evolving) bacterium. Int J Syst Bacteriol 46, 1004–1009.[CrossRef]
    [Google Scholar]
  25. Myers, C. R. & Nealson, K. H. ( 1988; ). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321.[CrossRef]
    [Google Scholar]
  26. Nealson, K. H., Myers, C. R. & Wimpee, B. ( 1991; ). Isolation and identification of manganese reducing bacteria, and estimates of microbial manganese reducing potential in Black Sea. Deep Sea Res 38, S907–S920.[CrossRef]
    [Google Scholar]
  27. Nogi, Y., Kato, C. & Horikoshi, K. ( 1998; ). Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170, 331–338.[CrossRef]
    [Google Scholar]
  28. Nozue, H., Hayashi, T., Hashimoto, Y., Ezaki, T., Hamasaki, K., Ohwada, K. & Terawaki, Y. ( 1992; ). Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al., 1990, 335. Int J Syst Bacteriol 42, 628–634.[CrossRef]
    [Google Scholar]
  29. Russell, N. J. & Nichols, D. S. ( 1999; ). Polyunsaturated fatty acids in marine bacteria – a dogma rewritten. Microbiology 145, 767–779.[CrossRef]
    [Google Scholar]
  30. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Satomi, M., Kimura, B., Mizoi, M., Sato, T. & Fujii, T. ( 1997; ). Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47, 832–836.[CrossRef]
    [Google Scholar]
  33. Semple, K. M. & Westlake, D. W. S. ( 1987; ). Characterization of iron reducing Alteromonas putrefaciens strains from oil field fluids. Can J Microbiol 33, 366–371.[CrossRef]
    [Google Scholar]
  34. Simidu, U., Kita-Tsukamoto, K., Yasumoto, T. & Yotsu, M. ( 1990; ). Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40, 331–336.[CrossRef]
    [Google Scholar]
  35. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  36. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  37. Stenström, I.-M. & Molin, G. ( 1990; ). Classification of the spoilage flora of fish, with special reference to Shewanella putrefaciens. J Appl Bacteriol 68, 601–618.[CrossRef]
    [Google Scholar]
  38. Takewaki, S., Okuzumi, K., Manabe, I., Tanimura, M., Miyamura, K., Nakahara, K., Yazaki, Y., Ohkubo, A. & Nagai, R. ( 1994; ). Nucleotide sequence comparison of the mycobacterial dnaJ gene and PCR-restriction fragment length polymorphism analysis for identification of mycobacterial species. Int J Syst Bacteriol 44, 159–166.[CrossRef]
    [Google Scholar]
  39. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  40. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  41. Venkateswaran, K., Dohmoto, N. & Harayama, S. ( 1998a; ). Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol 64, 681–687.
    [Google Scholar]
  42. Venkateswaran, K., Dollhopf, M. E., Aller, R., Stackebrandt, E. & Nealson, K. H. ( 1998b; ). Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48, 965–972.[CrossRef]
    [Google Scholar]
  43. Venkateswaran, K., Moser, D. P., Dollhopf, M. E. & 10 other authors ( 1999; ). Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49, 705–724.[CrossRef]
    [Google Scholar]
  44. Viale, A. M., Arakaki, A. K., Soncini, F. C. & Ferreyra, R. G. ( 1994; ). Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int J Syst Bacteriol 44, 527–533.[CrossRef]
    [Google Scholar]
  45. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  46. Weiner, R. M., Coyne, V. E., Brayton, P., West, P. & Raiken, S. F. ( 1988; ). Alteromonas colwelliana sp. nov., an isolate from oyster habitats. Int J Syst Bacteriol 38, 240–244.[CrossRef]
    [Google Scholar]
  47. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  48. West, P. A. & Colwell, R. R. ( 1984; ). Identification and classification of the Vibrionaceae – an overview. In Vibrios in the Environment, pp. 285–363. Edited by R. R. Colwell. New York: Wiley.
  49. Wilkinson, S. G. ( 1988; ). Gram-negative bacteria. In Microbial Lipids, vol. 1, pp. 299–488. Edited by C. Ratledge & S. G. Wilkinson. London: Academic Press.
  50. Yamamoto, S. & Harayama, S. ( 1995; ). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109.
    [Google Scholar]
  51. Yamamoto, S. & Harayama, S. ( 1996; ). Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int J Syst Bacteriol 46, 506–511.[CrossRef]
    [Google Scholar]
  52. Yamamoto, S. & Harayama, S. ( 1998; ). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48, 813–819.[CrossRef]
    [Google Scholar]
  53. Yano, Y., Nakayama, A., Saito, H. & Ishihara, K. ( 1994; ). Production of docosahexaenoic acid by marine bacteria isolated from deep sea fish. Lipids 29, 527–528.[CrossRef]
    [Google Scholar]
  54. Yano, Y., Nakayama, A. & Yoshida, K. ( 1997; ). Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63, 2572–2577.
    [Google Scholar]
  55. Yazawa, K. ( 1996; ). Production of eicosapentaenoic acid from marine bacteria. Lipids 31 (Suppl.), S297–S300.[CrossRef]
    [Google Scholar]
  56. Yazawa, K., Araki, K., Watanabe, K., Ishikawa, C., Inoue, A., Kondo, K., Watanabe, S. & Hashimoto, K. ( 1988; ). Eicosapentaenoic acid productivity of the bacteria isolated from fish intestines. Nippon Suisan Gakkaishi 54, 1835–1838.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02392-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02392-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 491 - 499

Tests that gave the same result for all six novel isolates of sp. nov., sp. nov. and sp. nov. [PDF](15 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error