1887

Abstract

A Gram-reaction-negative, strictly aerobic, non-motile, non-spore-forming, rod-shaped bacterial strain, designated THG 15, was isolated from soil of a field cultivated with in Okcheon province, South Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain THG 15 grew optimally at 25–30 °C and at pH 7 in the absence of NaCl on nutrient agar. Strain THG 15 displayed β-glucosidase (aesculinase) activity that was responsible for its ability to transform ginsenoside Rb (one of the dominant active components of ginseng) into compound K via Rd and F. On the basis of 16S rRNA gene sequence similarities, strain THG 15 was shown to belong to the family and was most closely related to PSD1-4 (97.7 % sequence similarity), JS6-6 (97.5 %) and LMG 4025 (97.3 %). The G+C content of the genomic DNA was 35.7 mol%. The major menaquinone was MK-6 and the major fatty acids were iso-C (50.3 %), iso-C 3-OH (21.9 %), summed feature 4 (comprising Cω7 and/or iso-C 2-OH; 9.5 %) and iso-Cω9 (9.3 %). DNA sequence analysis and chemotaxonomic data supported the affiliation of strain THG 15 to the genus . DNA–DNA relatedness values between strain THG 15 and its closest phylogenetic neighbours were <15 %. Strain THG 15 could be differentiated genotypically and phenotypically from recognized species of the genus . The isolate therefore represents a novel species, for which the name sp. nov. is proposed. The type strain is THG 15 ( = KACC 14527  = JCM 16719).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023614-0
2011-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1430.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023614-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M.. ( 1993;). Handbook of Microbiological Media. Edited by Parks L. C... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y.. ( 2006;). An introduction to the family Flavobacteriaceae. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 455–480. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  3. Bernardet J.-F., Hugo C., Bruun B.. ( 2006;). The genera Chryseobacterium and Elizabethkingia. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 638–676. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  4. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  5. Chae S., Kang K. A., Chang W. Y., Kim M. J., Lee S. J., Lee Y. S., Kim H. S., Kim D. H., Hyun J. W.. ( 2009;). Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. . J Agric Food Chem 57:, 5777–5782. [CrossRef].[PubMed]
    [Google Scholar]
  6. Choi K.-T.. ( 2008;). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. . Acta Pharmacol Sin 29:, 1109–1118. [CrossRef].[PubMed]
    [Google Scholar]
  7. Choi K., Kim M., Ryu J., Choi C.. ( 2007;). Ginsenosides compound K and Rh2 inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK pathways in human astroglial cells. . Neurosci Lett 421:, 37–41. [CrossRef].[PubMed]
    [Google Scholar]
  8. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef].[PubMed]
    [Google Scholar]
  9. de Beer H., Hugo C. J., Jooste P. J., Vancanneyt M., Coenye T., Vandamme P.. ( 2006;). Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. . Int J Syst Evol Microbiol 56:, 1317–1322. [CrossRef].[PubMed]
    [Google Scholar]
  10. Euzéby J. P.. ( 1997;). List of bacterial names with standing in nomenclature: a folder available on the Internet. . Int J Syst Bacteriol 47:, 590–592. http://www.bacterio.cict.fr [CrossRef].[PubMed]
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  12. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  13. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  14. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  15. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  16. Hantsis-Zacharov E., Senderovich Y., Halpern M.. ( 2008;). Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. . Int J Syst Evol Microbiol 58:, 1024–1028. [CrossRef].[PubMed]
    [Google Scholar]
  17. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  18. Ilardi P., Fernández J., Avendaño-Herrera R.. ( 2009;). Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. . Int J Syst Evol Microbiol 59:, 3001–3005. [CrossRef].[PubMed]
    [Google Scholar]
  19. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H.-J., Wauters G.. ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. . Int J Syst Evol Microbiol 59:, 2421–2428. [CrossRef].[PubMed]
    [Google Scholar]
  20. Kim M.-K., Lee J.-W., Lee K.-Y., Yang D.-C.. ( 2005;). Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. . J Microbiol 43:, 456–462.[PubMed]
    [Google Scholar]
  21. Kim K. K., Lee K. C., Oh H. M., Lee J. S.. ( 2008;). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. . Int J Syst Evol Microbiol 58:, 533–537. [CrossRef].[PubMed]
    [Google Scholar]
  22. Kim Y., Yuan H. D., Chung I. K., Chung S. H.. ( 2009;). Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. . J Agric Food Chem 57:, 1532–1537. [CrossRef].[PubMed]
    [Google Scholar]
  23. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  24. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef].[PubMed]
    [Google Scholar]
  25. Lee H. U., Bae E. A., Han M. J., Kim N. J., Kim D. H.. ( 2005;). Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. . Liver Int 25:, 1069–1073. [CrossRef].[PubMed]
    [Google Scholar]
  26. Liu Q.-M., Im W.-T., Lee M., Yang D.-C., Lee S.-T.. ( 2006;). Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 56:, 1939–1944. [CrossRef].[PubMed]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  28. Moore D. D., Dowhan D.. ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  29. Park J. H.. ( 2004;). Sun ginseng – a new processed ginseng with fortified activity. . Food Ind Nutr 9:, 23–27.
    [Google Scholar]
  30. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S.. ( 2006;). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. . Int J Syst Evol Microbiol 56:, 433–438. [CrossRef].[PubMed]
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
    [Google Scholar]
  33. Shin Y. W., Kim D. H.. ( 2005;). Antipruritic effect of ginsenoside Rb1 and compound K in scratching behavior mouse models. . J Pharmacol Sci 99:, 83–88. [CrossRef].[PubMed]
    [Google Scholar]
  34. Son J.-W., Kim H.-J., Oh D.-K.. ( 2008;). Ginsenoside Rd production from the major ginsenoside Rb1 by β-glucosidase from Thermus caldophilus. . Biotechnol Lett 30:, 713–716. [CrossRef].[PubMed]
    [Google Scholar]
  35. Szoboszlay S., Atzél B., Kukolya J., Tóth E. M., Márialigeti K., Schumann P., Kriszt B.. ( 2008;). Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. . Int J Syst Evol Microbiol 58:, 2748–2754. [CrossRef].[PubMed]
    [Google Scholar]
  36. Ten L. N., Jung H.-M., Im W. T., Yoo S. A., Lee S.-T.. ( 2008;). Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. . J Microbiol 46:, 519–524. [CrossRef].[PubMed]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  38. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:, 827–831. [CrossRef]
    [Google Scholar]
  39. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  40. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Stackebrandt E., Go S. J.. ( 2008;). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. . Int J Syst Evol Microbiol 58:, 470–473. [CrossRef].[PubMed]
    [Google Scholar]
  41. Zhao X., Wang J., Li J., Fu L., Gao J., Du X., Bi H., Zhou Y., Tai G.. ( 2009;). Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). . J Ind Microbiol Biotechnol 36:, 721–726. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023614-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023614-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error