1887

Abstract

A nitrogen-fixing bacterium, designated strain S27, was isolated from rhizosphere soil of . Phylogenetic analysis based on a fragment of the gene and the full-length 16S rRNA gene sequence revealed that strain S27 is a member of the genus . High levels of 16S rRNA gene sequence similarity were found between strain S27 and DSM 1735 (97.3 %), DSM 17841 (96.9 %), DSM 17842 (96.7 %) and DSM 18202 (96.6 %). However, DNA–DNA hybridization values between strain S27 and the four type strains were 37.64 %, 23.12 %, 25.6 % and 34.99 %, respectively. Levels of 16S rRNA gene sequence similarity between strain S27 and the type strains of other recognized members of the genus were below 96.5 %. The DNA G+C content of strain S27 was 46.0 mol%. The major fatty acids were anteiso-C, C and iso-C. The major isoprenoid quinone was MK-7. On the basis of its phenotypic characteristics and DNA–DNA hybridization results, strain S27 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S27 ( = CGMCC 1.10238  = DSM 23020).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.021709-0
2011-04-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/767.html?itemId=/content/journal/ijsem/10.1099/ijs.0.021709-0&mimeType=html&fmt=ahah

References

  1. Ash C. , Priest F. G. , Collins M. D. . ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . . Antonie van Leeuwenhoek 64:, 253–260. [CrossRef] [PubMed]
    [Google Scholar]
  2. Beneduzi A. , Costa P. B. , Parma M. , Melo I. S. , Bodanese-Zanettini M. H. , Passaglia L. M. . ( 2010; ). Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum . . Int J Syst Evol Microbiol 60:, 128–133. [CrossRef] [PubMed]
    [Google Scholar]
  3. Berge O. , Guinebretière M. H. , Achouak W. , Normand P. , Heulin T. . ( 2002; ). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. . Int J Syst Evol Microbiol 52:, 607–616.[PubMed]
    [Google Scholar]
  4. Coelho M. R. , Carneiro N. P. , Marriel I. E. , Seldin L. . ( 2009; ). Molecular detection of nifH gene-containing Paenibacillus in the rhizosphere of sorghum (Sorghum bicolor) sown in Cerrado soil. . Lett Appl Microbiol 48:, 611–617. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D. . ( 1985; ). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  6. Collins M. D. , Goodfellow M. , Minnikin D. E. . ( 1980; ). Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. . J Gen Microbiol 118:, 29–37.[PubMed]
    [Google Scholar]
  7. Cowan S. T. , Steel K. J. . ( 1965; ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  8. Ding Y. , Wang J. , Liu Y. , Chen S. . ( 2005; ). Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. . J Appl Microbiol 99:, 1271–1281. [CrossRef] [PubMed]
    [Google Scholar]
  9. Elo S. , Suominen I. , Kämpfer P. , Juhanoja J. , Salkinoja-Salonen M. , Haahtela K. . ( 2001; ). Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. . Int J Syst Evol Microbiol 51:, 535–545.[PubMed]
    [Google Scholar]
  10. Gordon R. E. , Haynes W. C. , Pang C. H.-N. . ( 1973; ). The Genus Bacillus. US Department of Agriculture Handbook no. 427. Washington, DC:: Agricultural Research Service;.
    [Google Scholar]
  11. Hong Y. Y. , Ma Y. C. , Zhou Y. G. , Gao F. , Liu H. C. , Chen S. F. . ( 2009; ). Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus . . Int J Syst Evol Microbiol 59:, 2656–2661. [CrossRef] [PubMed]
    [Google Scholar]
  12. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  13. Kumar S. , Tamura K. , Nei M. . ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ma Y. , Xia Z. , Liu X. , Chen S. . ( 2007; a). Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. . Int J Syst Evol Microbiol 57:, 6–11. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ma Y. , Zhang J. , Chen S. . ( 2007; b). Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans . . Int J Syst Evol Microbiol 57:, 873–877. [CrossRef] [PubMed]
    [Google Scholar]
  16. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979; ). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95.[CrossRef]
    [Google Scholar]
  17. Priest F. G. , Goodfellow M. , Todd C. . ( 1981; ). The genus Bacillus: a numerical analysis. . In The Aerobic Endospore-Forming Bacteria. Classification and Identification, pp. 91–103. Edited by Berkeley R. C. W. , Goodfellow M. . . London:: Academic Press;.
    [Google Scholar]
  18. Rhodes-Roberts M. . ( 1981; ). The taxonomy of some nitrogen-fixing Bacillus species with special reference to nitrogen fixation. . In The Aerobic Endospore-Forming Bacteria. Classification and Identification, pp. 315–335. Edited by Berkeley R. C. W. , Goodfellow M. . . London:: Academic Press;.
    [Google Scholar]
  19. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  20. Sasser M. , Kunitsky C. , Jackoway G. , Ezzell J. W. , Teska J. D. , Harper B. , Parker S. , Barden D. , Blair H. et al. ( 2005; ). Identification of Bacillus anthracis from culture using gas chromatographic analysis of fatty acid methyl esters. . J AOAC Int 88:, 178–181.[PubMed]
    [Google Scholar]
  21. Shida O. , Takagi H. , Kadowaki K. , Komagata K. . ( 1996; ). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. . Int J Syst Bacteriol 46:, 939–946. [CrossRef] [PubMed]
    [Google Scholar]
  22. Shida O. , Takagi H. , Kadowaki K. , Nakamura L. K. , Komagata K. . ( 1997; ). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . . Int J Syst Bacteriol 47:, 289–298. [CrossRef] [PubMed]
    [Google Scholar]
  23. Shirling E. B. , Gottlieb D. . ( 1966; ). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  24. Staneck J. L. , Roberts G. D. . ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  25. Suominen I. , Spröer C. , Kämpfer P. , Rainey F. A. , Lounatmaa K. , Salkinoja-Salonen M. . ( 2003; ). Paenibacillus stellifer sp. nov., a cyclodextrin-producing species isolated from paperboard. . Int J Syst Evol Microbiol 53:, 1369–1374. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  27. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). Report of the Ad-Hoc-Committee on Reconciliation of Approaches to Bacterial Systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  28. Weaver P. F. , Wall J. D. , Gest H. . ( 1975; ). Characterization of Rhodopseudomonas capsulata . . Arch Microbiol 105:, 207–216. [CrossRef] [PubMed]
    [Google Scholar]
  29. Yanagi M. , Yamasato K. . ( 1993; ). Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. . FEMS Microbiol Lett 107:, 115–120. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yoon J.-H. , Kim H. , Kim S.-B. , Kim H.-J. , Kim W. Y. , Lee S. T. , Goodfellow M. , Park Y.-H. . ( 1996; ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. . Int J Syst Bacteriol 46:, 502–505. [CrossRef]
    [Google Scholar]
  31. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. . Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.021709-0
Loading
/content/journal/ijsem/10.1099/ijs.0.021709-0
Loading

Data & Media loading...

. Phylogenetic tree based on partial gene sequence comparison (325 nt fragment) obtained using the neighbour-joining method, showing the position of strain S27 . UPM-Ca7 was used as an outgroup. Bootstrap analyses were performed with 1000 cycles. Only bootstrap values >50 % are shown at branch points. Bar, 0.2 substitutions per nucleotide position.

IMAGE

. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the position of strain S27 among species of the genus . NCDO 1769 was used as an outgroup. Bootstrap analyses were performed with 1000 cycles. Only bootstrap values >50 % are shown at branch points. Bar, 0.01 substitutions per nucleotide position.

IMAGE

. Extended neighbour-joining tree of members of the genus based on 16S rRNA gene sequences, showing the phylogenetic position of strain S27 with respect to other species of the genus . ATCC 11775 was used as an outgroup. Numbers at branch points are bootstrap percentages based on 1000 replicates. Only bootstrap values >50 % are shown. Bar, 0.02 substitutions per nucleotide position. [ PDF] (90 KB)

PDF

. Scanning electron microscopy of vegetative cells and spores of strain S27 . Bar, 1 µm.

IMAGE

. Polar lipids of strain S27 assayed by the TLC plate method. DPG, diphosphatidylglycerol; PG, phosphatidylglycerol; LPG, lyso-phosphatidylglycerol; PI, phosphatidylinositol; PIM, phosphatidylinositol-methyl; PIDM, phosphotidylinositol dimannoside.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error