1887

Abstract

A novel methanotroph, designated strain HT12, was isolated from forest soil in Japan. Cells of strain HT12 were Gram-reaction-negative, aerobic, non-motile, coccoid and formed pale-brown colonies. The strain grew only with methane and methanol as sole carbon and energy sources. Cells grew at 5–34 °C (optimum 24–32 °C). The strain possessed both particulate and soluble methane monooxygenases and assimilated formaldehyde using the ribulose monophosphate pathway. The major cellular fatty acids were C (46.9 %) and C (34.2 %), whereas unsaturated C fatty acids, typical of type I methanotrophs, were absent. Comparative 16S rRNA gene sequence analysis showed that the most closely related strains were LC 2 (93.1 % sequence similarity) and SV96 (92.6 % similarity). Phylogenetic analysis based on the gene indicated that strain HT12 formed a distinct lineage within the type I methanotrophs and analysis of the deduced amino acid sequence of strain HT12 showed that it had a 7 % divergence from that of its most closely related species. The DNA G+C content was 49.3 mol%. Based on this evidence, strain HT12 represents a novel species and genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is HT12 ( = NBRC 106162  = DSM 23269  = ATCC BAA-2070).

Funding
This study was supported by the:
  • , Asahi Glass Foundation
  • , Japan Society for the Promotion of Science , (Award 22310046 and 22380052)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019604-0
2011-04-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/810.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019604-0&mimeType=html&fmt=ahah

References

  1. Arfman N., Bystrykh L., Govorukhina N. I., Dijkhuizen L. 1990; 3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1. Methods Enzymol 188:391–397 [CrossRef][PubMed]
    [Google Scholar]
  2. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  4. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074[PubMed]
    [Google Scholar]
  5. Dunfield P. F., Yuryev A., Senin P., Smirnova A. V., Stott M. B., Hou S., Ly B., Saw J. H., Zhou Z. et al. 2007; Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia . Nature 450:879–882 [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Saidi S. M., Liu S. L., Hashimoto Y., Yamamoto H., Yabuuchi E. 1990; Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. FEMS Microbiol Lett 67:127–130 [CrossRef][PubMed]
    [Google Scholar]
  7. Green P. N. 1992; Taxonomy of methylotrophic bacteria. In Methane and Methanol Utilizers pp. 23–84 Edited by Murrell J. C., Dalton H. New York: Plenum Press; [CrossRef]
    [Google Scholar]
  8. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471[PubMed]
    [Google Scholar]
  9. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [CrossRef][PubMed]
    [Google Scholar]
  10. Horz H. P., Rich V., Avrahami S., Bohannan B. J. 2005; Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71:2642–2652 [CrossRef][PubMed]
    [Google Scholar]
  11. Iguchi H., Yurimoto H., Sakai Y. 2010; Soluble and particulate methane monooxygenase gene clusters of the type 1 methanotroph Methylovulum miyakonense HT12.. FEMS Microbiol Lett 312:71–76 [CrossRef][PubMed]
    [Google Scholar]
  12. Islam T., Jensen S., Reigstad L. J., Larsen O., Birkeland N. K. 2008; Methane oxidation at 55 °C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105:300–304 [CrossRef][PubMed]
    [Google Scholar]
  13. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [CrossRef]
    [Google Scholar]
  14. Kato N. 1990; 3-Hexulose-6-phosphate synthase from Mycobacterium gastri MB19. Methods Enzymol 188:397–401 [CrossRef][PubMed]
    [Google Scholar]
  15. Knief C., Lipski A., Dunfield P. F. 2003; Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714 [CrossRef][PubMed]
    [Google Scholar]
  16. Kolb S., Knief C., Dunfield P. F., Conrad R. 2005; Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ Microbiol 7:1150–1161 [CrossRef][PubMed]
    [Google Scholar]
  17. Mohanty S. R., Bodelier P. L., Floris V., Conrad R. 2006; Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354 [CrossRef][PubMed]
    [Google Scholar]
  18. Mohanty S. R., Bodelier P. L., Conrad R. 2007; Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31 [CrossRef][PubMed]
    [Google Scholar]
  19. Pol A., Heijmans K., Harhangi H. R., Tedesco D., Jetten M. S., Op den Camp H. J. M. 2007; Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878 [CrossRef][PubMed]
    [Google Scholar]
  20. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [CrossRef][PubMed]
    [Google Scholar]
  21. Rahalkar M., Bussmann I., Schink B. 2007; Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. Int J Syst Evol Microbiol 57:1073–1080 [CrossRef][PubMed]
    [Google Scholar]
  22. Singh J. S., Kashyap A. K. 2007; Contrasting pattern of methanotrophs in dry tropical forest soils: effect of soil nitrogen, carbon and moisture. Microbiol Res 162:276–283 [CrossRef][PubMed]
    [Google Scholar]
  23. Stoecker K., Bendinger B., Schöning B., Nielsen P. H., Nielsen J. L., Baranyi C., Toenshoff E. R., Daims H., Wagner M. 2006; Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 103:2363–2367 [CrossRef][PubMed]
    [Google Scholar]
  24. Vela G. R., Wyss O. 1964; Improved stain for visualization of Azotobacter encystment. J Bacteriol 87:476–477[PubMed]
    [Google Scholar]
  25. Vigliotta G., Nutricati E., Carata E., Tredici S. M., De Stefano M., Pontieri P., Massardo D. R., Prati M. V., De Bellis L., Alifano P. 2007; Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Appl Environ Microbiol 73:3556–3565 [CrossRef][PubMed]
    [Google Scholar]
  26. Wartiainen I., Hestnes A. G., McDonald I. R., Svenning M. M. 2006; Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). Int J Syst Evol Microbiol 56:109–113 [CrossRef][PubMed]
    [Google Scholar]
  27. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  28. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019604-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019604-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error