1887

Abstract

A novel methanotroph, designated strain HT12, was isolated from forest soil in Japan. Cells of strain HT12 were Gram-reaction-negative, aerobic, non-motile, coccoid and formed pale-brown colonies. The strain grew only with methane and methanol as sole carbon and energy sources. Cells grew at 5–34 °C (optimum 24–32 °C). The strain possessed both particulate and soluble methane monooxygenases and assimilated formaldehyde using the ribulose monophosphate pathway. The major cellular fatty acids were C (46.9 %) and C (34.2 %), whereas unsaturated C fatty acids, typical of type I methanotrophs, were absent. Comparative 16S rRNA gene sequence analysis showed that the most closely related strains were LC 2 (93.1 % sequence similarity) and SV96 (92.6 % similarity). Phylogenetic analysis based on the gene indicated that strain HT12 formed a distinct lineage within the type I methanotrophs and analysis of the deduced amino acid sequence of strain HT12 showed that it had a 7 % divergence from that of its most closely related species. The DNA G+C content was 49.3 mol%. Based on this evidence, strain HT12 represents a novel species and genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is HT12 ( = NBRC 106162  = DSM 23269  = ATCC BAA-2070).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.019604-0
2011-04-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/810.html?itemId=/content/journal/ijsem/10.1099/ijs.0.019604-0&mimeType=html&fmt=ahah

References

  1. Arfman N. , Bystrykh L. , Govorukhina N. I. , Dijkhuizen L. . ( 1990; ). 3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1. . Methods Enzymol 188:, 391–397. [CrossRef] [PubMed]
    [Google Scholar]
  2. Auman A. J. , Stolyar S. , Costello A. M. , Lidstrom M. E. . ( 2000; ). Molecular characterization of methanotrophic isolates from freshwater lake sediment. . Appl Environ Microbiol 66:, 5259–5266. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bowman J. P. , Sly L. I. , Nichols P. D. , Hayward A. C. . ( 1993; ). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. . Int J Syst Bacteriol 43:, 735–753. [CrossRef]
    [Google Scholar]
  4. Costello A. M. , Lidstrom M. E. . ( 1999; ). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. . Appl Environ Microbiol 65:, 5066–5074.[PubMed]
    [Google Scholar]
  5. Dunfield P. F. , Yuryev A. , Senin P. , Smirnova A. V. , Stott M. B. , Hou S. , Ly B. , Saw J. H. , Zhou Z. et al. ( 2007; ). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia . . Nature 450:, 879–882. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ezaki T. , Saidi S. M. , Liu S. L. , Hashimoto Y. , Yamamoto H. , Yabuuchi E. . ( 1990; ). Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. . FEMS Microbiol Lett 67:, 127–130. [CrossRef] [PubMed]
    [Google Scholar]
  7. Green P. N. . ( 1992; ). Taxonomy of methylotrophic bacteria. . In Methane and Methanol Utilizers, pp. 23–84. Edited by Murrell J. C. , Dalton H. . . New York:: Plenum Press;.[CrossRef]
    [Google Scholar]
  8. Hanson R. S. , Hanson T. E. . ( 1996; ). Methanotrophic bacteria. . Microbiol Rev 60:, 439–471.[PubMed]
    [Google Scholar]
  9. Holmes A. J. , Costello A. , Lidstrom M. E. , Murrell J. C. . ( 1995; ). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. . FEMS Microbiol Lett 132:, 203–208. [CrossRef] [PubMed]
    [Google Scholar]
  10. Horz H. P. , Rich V. , Avrahami S. , Bohannan B. J. . ( 2005; ). Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. . Appl Environ Microbiol 71:, 2642–2652. [CrossRef] [PubMed]
    [Google Scholar]
  11. Iguchi H. , Yurimoto H. , Sakai Y. . ( 2010; ). Soluble and particulate methane monooxygenase gene clusters of the type 1 methanotroph Methylovulum miyakonense HT12.. FEMS Microbiol Lett 312:, 71–76. [CrossRef] [PubMed]
    [Google Scholar]
  12. Islam T. , Jensen S. , Reigstad L. J. , Larsen O. , Birkeland N. K. . ( 2008; ). Methane oxidation at 55 °C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. . Proc Natl Acad Sci U S A 105:, 300–304. [CrossRef] [PubMed]
    [Google Scholar]
  13. Katayama-Fujimura Y. , Komatsu Y. , Kuraishi H. , Kaneko T. . ( 1984; ). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172.[CrossRef]
    [Google Scholar]
  14. Kato N. . ( 1990; ). 3-Hexulose-6-phosphate synthase from Mycobacterium gastri MB19. . Methods Enzymol 188:, 397–401. [CrossRef] [PubMed]
    [Google Scholar]
  15. Knief C. , Lipski A. , Dunfield P. F. . ( 2003; ). Diversity and activity of methanotrophic bacteria in different upland soils. . Appl Environ Microbiol 69:, 6703–6714. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kolb S. , Knief C. , Dunfield P. F. , Conrad R. . ( 2005; ). Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. . Environ Microbiol 7:, 1150–1161. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mohanty S. R. , Bodelier P. L. , Floris V. , Conrad R. . ( 2006; ). Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. . Appl Environ Microbiol 72:, 1346–1354. [CrossRef] [PubMed]
    [Google Scholar]
  18. Mohanty S. R. , Bodelier P. L. , Conrad R. . ( 2007; ). Effect of temperature on composition of the methanotrophic community in rice field and forest soil. . FEMS Microbiol Ecol 62:, 24–31. [CrossRef] [PubMed]
    [Google Scholar]
  19. Pol A. , Heijmans K. , Harhangi H. R. , Tedesco D. , Jetten M. S. , Op den Camp H. J. M. . ( 2007; ). Methanotrophy below pH 1 by a new Verrucomicrobia species. . Nature 450:, 874–878. [CrossRef] [PubMed]
    [Google Scholar]
  20. Poly F. , Monrozier L. J. , Bally R. . ( 2001; ). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef] [PubMed]
    [Google Scholar]
  21. Rahalkar M. , Bussmann I. , Schink B. . ( 2007; ). Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. . Int J Syst Evol Microbiol 57:, 1073–1080. [CrossRef] [PubMed]
    [Google Scholar]
  22. Singh J. S. , Kashyap A. K. . ( 2007; ). Contrasting pattern of methanotrophs in dry tropical forest soils: effect of soil nitrogen, carbon and moisture. . Microbiol Res 162:, 276–283. [CrossRef] [PubMed]
    [Google Scholar]
  23. Stoecker K. , Bendinger B. , Schöning B. , Nielsen P. H. , Nielsen J. L. , Baranyi C. , Toenshoff E. R. , Daims H. , Wagner M. . ( 2006; ). Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. . Proc Natl Acad Sci U S A 103:, 2363–2367. [CrossRef] [PubMed]
    [Google Scholar]
  24. Vela G. R. , Wyss O. . ( 1964; ). Improved stain for visualization of Azotobacter encystment. . J Bacteriol 87:, 476–477.[PubMed]
    [Google Scholar]
  25. Vigliotta G. , Nutricati E. , Carata E. , Tredici S. M. , De Stefano M. , Pontieri P. , Massardo D. R. , Prati M. V. , De Bellis L. , Alifano P. . ( 2007; ). Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. . Appl Environ Microbiol 73:, 3556–3565. [CrossRef] [PubMed]
    [Google Scholar]
  26. Wartiainen I. , Hestnes A. G. , McDonald I. R. , Svenning M. M. . ( 2006; ). Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). . Int J Syst Evol Microbiol 56:, 109–113. [CrossRef] [PubMed]
    [Google Scholar]
  27. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  28. Whittenbury R. , Phillips K. C. , Wilkinson J. F. . ( 1970; ). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61:, 205–218.[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.019604-0
Loading
/content/journal/ijsem/10.1099/ijs.0.019604-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 810 - 815

Phylogenetic tree of the derived amino acid sequences of the gene of strain HT12 and other methanotrophs.

Phylogenetic tree of the derived amino acid sequences of the gene of strain HT12 and other methanotrophs.

[PDF](29.6KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error