1887

Abstract

A Gram-negative, motile, rod-shaped bacterial strain, designated S3-22, was isolated from a sediment sample collected from a ballast water tank of a commercial ship and subjected to a polyphasic taxonomic characterization. The isolate formed small, light-yellow, semi-translucent and circular colonies on solid complex media. The strain was oxidase- and catalase-positive and metabolized a large number of carbon sources. Chemotaxonomic analysis showed ubiquinone Q-10 as predominant respiratory quinone, phosphatidylglycerol and an unidentified glycolipid as major polar lipids and iso-C 9, iso-C, C 7 and/or iso-C 2-OH, C, iso-C and C 7 as major fatty acids and the hydroxy fatty acids iso-C 3-OH and C 3-OH. The genomic DNA G+C content was 54.9 mol%. 16S rRNA gene sequence analysis revealed that the isolate has 96.1 % similarity to the type strain of , the sole described species within the order , and less than 91.0 % similarity to other recognized species. On the basis of phenotypic and genotypic data, strain S3-22 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain S3-22 (=CGMCC 1.9109 =JCM 16261). An emended description of the genus is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.018200-0
2011-02-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/2/422.html?itemId=/content/journal/ijsem/10.1099/ijs.0.018200-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Meyer H., Lindholst S., Vancanneyt M., Smit J. 1997; Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato , Brevundimonas and Hyphomonas . Syst Appl Microbiol 20:522–539 [CrossRef]
    [Google Scholar]
  2. Abraham W.-R., Strömpl C., Meyer H., Lindholst S., Moore E. R. B., Christ R., Vancanneyt M., Tindall B. J., Bennasar A. other authors 1999 Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49, 1053–1073 [CrossRef]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef]
    [Google Scholar]
  4. Dadhwal M., Jit S., Kumari H., Lal R. 2009; Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59:3140–3144 [CrossRef]
    [Google Scholar]
  5. Dong X.-Z., Cai M.-Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation;
    [Google Scholar]
  6. Drake L. A., Doblin M. A., Dobbs F. C. 2007; Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Mar Pollut Bull 55:333–341 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Grossi G., Bargossi A. M., Fiorella P. L., Piazzi S., Battino M., Bianchi G. P. 1992; Improved high-performance liquid chromatographic method for the determination of coenzyme Q10 in plasma. J Chromatogr A 593:217–226 [CrossRef]
    [Google Scholar]
  10. Jeon Y.-S., Chung H., Park S., Hur I., Lee J.-H., Chun J. 2005; jphydit: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173 [CrossRef]
    [Google Scholar]
  11. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  14. Kwon K. K., Lee H. S., Yang S. H., Kim S. J. 2005 Kordiimonas gwangyangensis gen. nov., sp nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage ( Kordiimonadales ord. nov.) in the ‘ Alphaproteobacteria ’. Int J Syst Evol Microbiol 55, 2033–2037. [CrossRef]
  15. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  17. Mesbah M., Whitman W. B. 1989; Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479:297–306 [CrossRef]
    [Google Scholar]
  18. Mikhailov V. V., Romanenko L. A., Ivanova E. P. 2006; The genus Alteromonas and related proteobacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn. vol 6 pp 597–645 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  19. Poindexter J. S. 2005; Genus I. Caulobacter Henrici and Johnson 1935b, 83AL emend. Abraham, Strömpl, Meyer, Lindhorst, Moore, Christ, Vancanneyt, Tindall, Bennasar, Smit and Tresar 1999, 1070. In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 2C pp 287–303 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  23. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M. 2007 Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624. [CrossRef]
  24. Xu X.-W., Wu Y.-H., Wang C.-S., Yang J.-Y., Oren A., Wu M. 2008; Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58:637–640 [CrossRef]
    [Google Scholar]
  25. Xu X.-W., Wu Y.-H., Wang C.-S., Wang X.-G., Oren A., Wu M. 2009; Croceicoccus marinus gen. nov., sp. nov. a yellow-pigmented bacterium from deep-sea sediment, and emended description of the family Erythrobacteraceae . Int J Syst Evol Microbiol 59:2247–2253 [CrossRef]
    [Google Scholar]
  26. ZoBell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.018200-0
Loading
/content/journal/ijsem/10.1099/ijs.0.018200-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error