1887

Abstract

grows in yeast extract media with or without elemental sulfur. The growth rate and the cell yield are not changed by the presence of sulfur, but the pH of the medium drops slightly when sulfur is present, presumably because of gratuitous sulfur oxidation. No growth occurs with sulfur alone. is an obligate chemoorganotroph. grows equally well with either elemental sulfur or glucose as a sole energy source; this organism is a facultative autotroph. Since the name does not appear on the Approved Lists of Bacterial Names, it is revived here, and strain ATCC 27807 is designated the type strain. is considered a subspecies of on the basis of close phenotypic similarity and deoxyribonucleic acid homology. sp. strain A2 is a distinctive mixotroph that shows little deoxyribonucleic acid homology with other species of . This organism is named , and strain ATCC 25364 is designated the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-33-2-211
1983-04-01
2022-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/33/2/ijs-33-2-211.html?itemId=/content/journal/ijsem/10.1099/00207713-33-2-211&mimeType=html&fmt=ahah

References

  1. Arkesteyn G. J. M. W., de Bont J. A. M. 1980; Thiobacillus acidophilus: a study of its presence in Thiobacillus ferrooxidans cultures. Can. J. Microbiol 26:1057–1065
    [Google Scholar]
  2. Brierley J. A. 1978; Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl. Environ. Microbiol 36:523–525
    [Google Scholar]
  3. Guay R., Silver M. 1975; Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can. J. Microbiol 21:281–288
    [Google Scholar]
  4. Harrison A. P. Jr. 1978; Microbial succession and mineral leaching in an artificial coal spoil. Appl. Environ. Microbiol 36:861–869
    [Google Scholar]
  5. Harrison A. P. Jr. 1981; Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int. J. Syst. Bacteriol 31:327–332
    [Google Scholar]
  6. Harrison A. P. Jr. 1982; Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch. Microbiol 131:68–76
    [Google Scholar]
  7. Harrison A. P. Jr., Jarvis B. W., Johnson J. L. 1980; Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships as studied by means of deoxyribonucleic acid homology. J. Bacteriol 143:448–454
    [Google Scholar]
  8. Harrison A. P. Jr., Lawrence F. R. 1963; Phenotypic, genotypic, and chemical changes in starving populations of Aerobacter aerogenes. J. Bacteriol 85:742–750
    [Google Scholar]
  9. Jackson J. F., Moriarty D. J. W., Nicholas D. J. D. 1968; Deoxyribonucleic acid base composition and taxonomy of thiobacilli and some nitrifying bacteria. J. Gen. Microbiol 53:53–60
    [Google Scholar]
  10. Johnson J. L. 1973; Use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol 23:308–315
    [Google Scholar]
  11. Johnson J. L., Phelps C. F., Cummins C. S., London J., Gasser F. 1980; Taxonomy of the Lactobacillus acidophilus group. Int. J. Syst. Bacteriol 30:53–68
    [Google Scholar]
  12. London J. 1963; Thiobacillus intermedius nov. sp., a novel type of facultative autotroph. Arch. Microbiol 46:329–337
    [Google Scholar]
  13. London J., Rittenberg S. C. 1967; Thiobacillus perometabolis nov. sp., a non-autotrophic Thiobacillus. Arch. Microbiol 59:218–225
    [Google Scholar]
  14. Norris P. R., Brierley J. A., Kelly D. P. 1980; Physiological characteristics of two facultatively thermophilic mineral-oxidizing bacteria. FEMS Microbiol. Lett 7:119–122
    [Google Scholar]
  15. Rittenberg S. C. 1969; The role of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv. Microbiol. Physiol 3:159–196
    [Google Scholar]
  16. Skennan V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int. J. Syst. Bacteriol 30:225–420
    [Google Scholar]
  17. Starkey R. L. 1934; Cultivation of organisms concerned in the oxidation of thiosulfate. J. Bacteriol 28:365–386
    [Google Scholar]
  18. Starkey R. L. 1935; Isolation of some bacteria which oxidize thiosulfate. Soil. Sci 39:197–215
    [Google Scholar]
  19. Taylor B. F., Hoare D. S. 1969; New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus. J. Bacteriol 100:487–497
    [Google Scholar]
  20. Vishniac W. V. 1974; Genus Thiobacillus. 456–461 Buchanan R. E., Gibbons N. E. Bergey’s manual of determinative bacteriology, 8. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Vishniac W. V., Santer M. 1957; The thiobacilli. Bacteriol. Rev 21:195–213
    [Google Scholar]
  22. Wichlacz P. L., Unz R. F. 1981; Acidophilic, heterotrophic bacteria of acidic mine waters. Appl. Environ. Microbiol 41:1254–1261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-33-2-211
Loading
/content/journal/ijsem/10.1099/00207713-33-2-211
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error