1887

Abstract

A probability matrix for identification was developed from data derived from a series of cooperative studies of slowly growing mycobacteria. The matrix includes feature frequencies exhibited by 14 numerical taxonomy clusters in 34 tests. The clusters correspond to 13 defined species. The matrix is designed primarily to screen strains either for membership in 1 of the 14 taxa or for exclusion from these taxa and, thus, to determine whether the strains are in need of further characterization. The matrix was used in the analysis of 298 strains. Two related parameters were used as decision thresholds. First, the probability of the most likely taxon must be 99 times greater than that of the second most likely taxon. Second, the absolute likelihood of the strain being in the most likely taxon must be at least 0.01 times that of a “perfect” strain of the taxon. By using these thresholds and additional judgments, 83 strains were found to be appropriate for further study, with a likelihood that 53% of these strains belong to unrepresented taxa.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-30-3-528
1980-07-01
2022-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/30/3/ijs-30-3-528.html?itemId=/content/journal/ijsem/10.1099/00207713-30-3-528&mimeType=html&fmt=ahah

References

  1. Bonicke R. 1962; Identification of mycobacteria by bio chemical methods. Bull. Int. Union Tuberc 32:13–68
    [Google Scholar]
  2. Bonicke R., Rohrscheidt E., Pascoe E. 1962; Die Verbreitung der Nitratreduktase innerhalb der Gattung Mycobacterium.. Sonderdr. Naturwiss 49:43–44
    [Google Scholar]
  3. David H. L., Jahan M., Jumen A., Grandy J., Lehman E. H. 1978; Numerical taxonomy analysis of Mycobacterium africanum.. Int. J. Syst. Bacteriol 28:412–472
    [Google Scholar]
  4. Dybowski W., Franklin D. A. 1968; Conditional probability and the identification of bacteria: a pilot study. J. Gen. Microbiol 54:215–229
    [Google Scholar]
  5. Friedman R. B., Bruce D., Maclowry J., Brenner V. 1973; Computer-assisted identification of bacteria. Am. J. Clin. Pathol 60:395–403
    [Google Scholar]
  6. Friedman R., Maclowry J. 1973; Computer iden tification of bacteria on the basis of their antibiotic susceptibility patterns. Appl. Microbiol 26:314–317
    [Google Scholar]
  7. Johnson R. 1979; Computer-aided identification. FDA (Food Drug Adm.) By-Lines. 9:235–250
    [Google Scholar]
  8. Kappler W. 1965; Acetyl-naphthylamin-esterasen-aktiv-itat von Mykobakterien. Beitr. Klin. Tuberk. 130:1–4
    [Google Scholar]
  9. Kappler W. 1965; Zur Differanzierung von Mykobakter ien mit dem Phosphatase-Test. Beitr. Klin. Tuberk. Spezifischen Tuberk. Forsch. 130:223–226
    [Google Scholar]
  10. Kappler W. 1968; Zur Taxonomie der Gattung Myco bacterium. I. Klassifizierung schnell wachsender Mykobakterien. Z. Tuberk. 129:311–319
    [Google Scholar]
  11. Kappler W. 1971; Beitrag zur Artbestimmung von My kobakterien. Z. Erkr. Atmungsorgane. 135:39–51
    [Google Scholar]
  12. Krichevsky M. I. 1979; The microbial information sys tem (MICRO-IS): a system overview. FDA (Food Drug Adm.) By-Lines. 9:217–222
    [Google Scholar]
  13. Kubica G. P., Pool G. L. 1960; Studies on catalase activity of acid-fast bacilli. Am. Rev. Respir. Dis 81:387–391
    [Google Scholar]
  14. Lapage S. P., Bascomb S., Willcox W. R., Curtis M. A. 1970; Computer identificaton of bacteria. p 122 In Baillie A., Gilbert R. J. (ed.) Automation, mechanization and data handling in microbiology Academic Press, Inc.; London:
    [Google Scholar]
  15. Lapage S. P., Bascomb S., Will cox W. R., Curtis M. A. 1973; Identification of bacteria by computer: general aspects and perspectives. J. Gen. Microbiol 77:273–290
    [Google Scholar]
  16. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. (ed.) 1975; International code of nomenclature of bacteria, 1976 revision. American Society for Microbiology; Washington, D.C.:
    [Google Scholar]
  17. Marks J. 1964; A stepped pH technique for the estima tion of pyrazinamide sensitivity. Tubercle 45:47–50
    [Google Scholar]
  18. Meissner G., Schroder K. H., Amadio G. E., Anz W., Chaparas S., Engel H. W. B., Jenkins P. A., Kappler W., Klee berg H. H., Kubala E., Kubin M., Lauterbach D., Lind A., Magnusson M., Mikova Z., Pattyn S. R., Schaefer W. B., Stanford J. L., Tsuk-mura M., Wayne L. G., Willers I., Wolinsky E. 1974; A cooperative numerical analysis of nonscoto-and nonphotochromogenic slowly growing mycobacteria. J. Gen. Microbiol 83:207–235
    [Google Scholar]
  19. Rogosa M., Krichevsky M. i., Colwell R. 1971; Method for coding data on microbial strains for computers (edition AB). Int. J. Syst. Bacteriol 21:1A–175A
    [Google Scholar]
  20. Runyon E. H., Wayne L. G., Kubica G. P. 1974; Family II. Mycobacteriaceae Chester 1897, 63p. 681701. In Buchanan R. E., Gibbons N. E. (ed.) Ber-gey’s manual of determinative bacteriology, 8th ed. The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  21. Schmiedel A., Gerloff W. 1965; Dreifach-differ-enzierung von Mykobacterien in der Agar-Hohen-Schicht-Kultur. Prax. Pneumol 19:528–536
    [Google Scholar]
  22. Sneath P. H. A., Sokal R. R. 1973 Numerical taxonomy W. H. Freeman and Co.; San Francisco:
    [Google Scholar]
  23. Timpe A., Runyon E. H. 1954; The relationship of “atypical" acid-fast bacteria to human disease. J. Lab. Clin. Med 44:202–209
    [Google Scholar]
  24. Tirunarayanan M. O., Vischer W. A., Bruhin H. 1960; Some properties of catechol peroxidase of mycobacteria bearing on isoniazid susceptibility. J. Bacteriol 80:423–429
    [Google Scholar]
  25. Wayne L. G. 1974; Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am. Rev. Respir. Dis 109:147–151
    [Google Scholar]
  26. Wayne L. G. 1978; Mycobacterial taxonomy: a search for discontinuities. Ann. Inst. Pasteur Paris 129A:13–27
    [Google Scholar]
  27. Wayne L. G., Andrade L., Froman S., Kappler W., Kubala E., Meissner G., Tsukamura M. 1978; A cooperative numerical analysis of Mycobacterium gastri, Mycobacterium kansasii and Mycobacterium marinum. . J. Gen. Microbiol 109:319–327
    [Google Scholar]
  28. Wayne L. G., Dietz T. M., Gemez-Rieux C., Jenkins P. A., Kappler W., Kubica G. P., Kwa-pinski J. B. G., Meissner G., Pattyn S. R., Runyon E. H., Schroder K. H., Silcox V. A., Tacquet A., Tsukamura M., Wolinsky E. 1974; A cooperative numerical analysis of scotochromogenic slowly growing mycobacteria. J. Gen. Microbiol 66:255–271
    [Google Scholar]
  29. Wayne L. G., Doubek J. R. 1965; Classification and identification of mycobacteria. II. Tests employing nitrate and nitrite as substrate. Am. Rev. Respir. Dis. 91:738–745
    [Google Scholar]
  30. Wayne L. G., Doubek J. R. 1968; Diagnostic key to mycobacteria encountered in clinical laboratories. Appl. Microbiol 16:925–931
    [Google Scholar]
  31. Wayne L. G., Doubek J. R., Russell R. 1964; Classification and identification of mycobacteria. I. Tests employing Tween 80 as substrate. Am. Rev. Respir. Dis. 90:588–597
    [Google Scholar]
  32. Wayne L. G., Engbaek H. C., Engel H. W. B., Froman S., Gross W., Hawkins J., Kappler W., Karlson A. G., Klee berg H. H., Krasnow I., Kubica G. P., McDurmont C., Nel E. E., Pattyn S. R., Schroder K. H., Showalter S., Tarnok I., Tsukamura M., Vergmann B., Wolinsky E. 1974; Highly reproducible techniques for use in systematic bacteriology in the genus Mycobacterium-, tests for pigment, urease, resistance to sodium chloride, hydrolysis of Tween 80, and β-galactosidase. Int. J. Syst. Bacteriol. 24:412–419
    [Google Scholar]
  33. Wayne L. G., Engel H. W. B., Grassi C., Gross W., Hawkins J., Jenkins P. A., Kappler W., Klee-berg H. H., Krasnow I., Nel E. E., Pattyn S. R., Richards P. A., Showalter S., Slosarek M., Szabo I., Tarnok I., Tsukamura M., Vergmann B., Wolinsky E. 1976; Highly reproducible techniques for use in systematic bacteriology in the genus Mycobacterium'. tests for niacin and catalase and for resistance to isoniazid, thiophene 2-carboxylic acid hydrazide, hydroxylamine, and p-nitro benzoate. Int. J. Syst. Bacteriol. 26:311–318
    [Google Scholar]
  34. Willcox W. R., Lapage S. P. 1975; Methods used in a program for computer-aided identification of bacteria. p 103–119 In Pankhurst R. J. (ed.) Biological identification with computers Academic Press, Inc.; London:
    [Google Scholar]
  35. Willcox W. R., Lapage S. P., Bascomb S., Curtis M. A. 1973; Identification of bacteria by computer: theory and programming. J. Gen. Microbiol. 77:317330
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-30-3-528
Loading
/content/journal/ijsem/10.1099/00207713-30-3-528
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error