Marine Microbiology
Ultimately, understanding the relationship between ecological and evolutionary processes and the environment will elucidate the factors driving marine microbial distributions and community structure. In order to understand these complex dynamics, marine microbiology necessitates interdisciplinary science, encompassing fields such as biogeochemistry, oceanography, ecology, geology, chemistry and microbiology. It also represents incredible potential for discovery, with impacts on our ability to manage and utilize the oceans as a sustainable resource.
Guest-edited by Dr. Katherine Duncan and Dr. Alex Chase, this Marine Microbiology special collection aims to highlight key research on marine microorganisms as they underpin the complex processes of our blue planet.
Collection Contents
-
-
Spatial variation in microbial communities associated with sea-ice algae in Commonwealth Bay, East Antarctica
Antarctic sea-ice forms a complex and dynamic system that drives many ecological processes in the Southern Ocean. Sea-ice microalgae and their associated microbial communities are understood to influence nutrient flow and allocation in marine polar environments. Sea-ice microalgae and their microbiota can have high seasonal and regional (>1000 km2) compositional and abundance variation, driven by factors modulating their growth, symbiotic interactions and function. In contrast, our knowledge of small-scale variation in these communities is limited. Understanding variation across multiple scales and its potential drivers is critical for informing on how multiple stressors impact sea-ice communities and the functions they provide. Here, we characterized bacterial communities associated with sea-ice microalgae and the potential drivers that influence their variation across a range of spatial scales (metres to >10 kms) in a previously understudied area in Commonwealth Bay, East Antarctica where anomalous events have substantially and rapidly expanded local sea-ice coverage. We found a higher abundance and different composition of bacterial communities living in sea-ice microalgae closer to the shore compared to those further from the coast. Variation in community structure increased linearly with distance between samples. Ice thickness and depth to the seabed were found to be poor predictors of these communities. Further research on the small-scale environmental drivers influencing these communities is needed to fully understand how large-scale regional events can affect local function and ecosystem processes.
-
-
-
Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
-
-
-
Impact of growth media and pressure on the diversity and antimicrobial activity of isolates from two species of hexactinellid sponge
Access to deep-sea sponges brings with it the potential to discover novel antimicrobial candidates, as well as novel cold- and pressure-adapted bacteria with further potential clinical or industrial applications. In this study, we implemented a combination of different growth media, increased pressure and high-throughput techniques to optimize recovery of isolates from two deep-sea hexactinellid sponges, Pheronema carpenteri and Hertwigia sp., in the first culture-based microbial analysis of these two sponges. Using 16S rRNA gene sequencing for isolate identification, we found a similar number of cultivable taxa from each sponge species, as well as improved recovery of morphotypes from P. carpenteri at 22–25 °C compared to other temperatures, which allows a greater potential for screening for novel antimicrobial compounds. Bacteria recovered under conditions of increased pressure were from the phyla Proteobacteria , Actinobacteria and Firmicutes , except at 4 %O2/5 bar, when the phylum Firmicutes was not observed. Cultured isolates from both sponge species displayed antimicrobial activity against Micrococcus luteus, Staphylococcus aureus and Escherichia coli .
-
-
-
Siderophore piracy enhances Vibrio cholerae environmental survival and pathogenesis
More LessVibrio cholerae, the aetiological agent of cholera, possesses multiple iron acquisition systems, including those for the transport of siderophores. How these systems benefit V. cholerae in low-iron, polymicrobial communities in environmental settings or during infection remains poorly understood. Here, we demonstrate that in iron-limiting conditions, co-culture of V. cholerae with a number of individual siderophore-producing microbes significantly promoted V. cholerae growth in vitro. We further show that in the host environment with low iron, V. cholerae colonizes better in adult mice in the presence of the siderophore-producing commensal Escherichia coli . Taken together, our results suggest that in aquatic reservoirs or during infection, V. cholerae may overcome environmental and host iron restriction by hijacking siderophores from other microbes.
-
-
-
rpoB mutations conferring rifampicin-resistance affect growth, stress response and motility in Vibrio vulnificus
More LessRifampicin is a broad-spectrum antibiotic that binds to the bacterial RNA polymerase (RNAP), compromising DNA transcription. Rifampicin resistance is common in several microorganisms and it is typically caused by point mutations in the gene encoding the β subunit of RNA polymerase, rpoB. Different rpoB mutations are responsible for various levels of rifampicin resistance and for a range of secondary effects. rpoB mutations conferring rifampicin resistance have been shown to be responsible for severe effects on transcription, cell fitness, bacterial stress response and virulence. Such effects have never been investigated in the marine pathogen Vibrio vulnificus , even though rifampicin-resistant strains of V. vulnificus have been isolated previously. Moreover, spontaneous rifampicin-resistant strains of V. vulnificus have an important role in conjugation and mutagenesis protocols, with poor consideration of the effects of rpoB mutations. In this work, effects on growth, stress response and virulence of V. vulnificus were investigated using a set of nine spontaneous rifampicin-resistant derivatives of V. vulnificus CMCP6. Three different mutations (Q513K, S522L and H526Y) were identified with varying incidence rates. These three mutant types each showed high resistance to rifampicin [minimal inhibitory concentration (MIC) >800 µg ml−1], but different secondary effects. The strains carrying the mutation H526Y had a growth advantage in rich medium but had severely reduced salt stress tolerance in the presence of high NaCl concentrations as well as a significant reduction in ethanol stress resistance. Strains possessing the S522L mutation had reduced growth rate and overall biomass accumulation in rich medium. Furthermore, investigation of virulence characteristics demonstrated that all the rifampicin-resistant strains showed compromised motility when compared with the wild-type, but no major effects on exoenzyme production were observed. These findings reveal a wide range of secondary effects of rpoB mutations and indicate that rifampicin resistance is not an appropriate selectable marker for studies that aim to investigate phenotypic behaviour in this organism.
-
-
-
Microbial metabolism of isoprene: a much-neglected climate-active gas
More LessThe climate-active gas isoprene is the major volatile produced by a variety of trees and is released into the atmosphere in enormous quantities, on a par with global emissions of methane. While isoprene production in plants and its effect on atmospheric chemistry have received considerable attention, research into the biological isoprene sink has been neglected until recently. Here, we review current knowledge on the sources and sinks of isoprene and outline its environmental effects. Focusing on degradation by microbes, many of which are able to use isoprene as the sole source of carbon and energy, we review recent studies characterizing novel isoprene degraders isolated from soils, marine sediments and in association with plants. We describe the development and use of molecular methods to identify, quantify and genetically characterize isoprene-degrading strains in environmental samples. Finally, this review identifies research imperatives for the further study of the environmental impact, ecology, regulation and biochemistry of this interesting group of microbes.
-
-
-
Adaptation to pH stress by Vibrio fischeri can affect its symbiosis with the Hawaiian bobtail squid (Euprymna scolopes)
More LessMany microorganisms engaged in host-microbe interactions pendulate between a free-living phase and a host-affiliated stage. How adaptation to stress during the free-living phase affects host-microbe associations is unclear and understudied. To explore this topic, the symbiosis between Hawaiian bobtail squid (Euprymna scolopes) and the luminous bacterium Vibrio fischeri was leveraged for a microbial experimental evolution study. V. fischeri experienced adaptation to extreme pH while apart from the squid host. V. fischeri was serially passaged for 2000 generations to the lower and upper pH growth limits for this microorganism, which were pH 6.0 and 10.0, respectively. V. fischeri was also serially passaged for 2000 generations to vacillating pH 6.0 and 10.0. Evolution to pH stress both facilitated and impaired symbiosis. Microbial evolution to acid stress promoted squid colonization and increased bioluminescence for V. fischeri , while symbiont adaptation to alkaline stress diminished these two traits. Oscillatory selection to acid and alkaline stress also improved symbiosis for V. fischeri , but the facilitating effects were less than that provided by microbial adaptation to acid stress. In summary, microbial adaptation to harsh environments amid the free-living phase may impact the evolution of host-microbe interactions in ways that were not formerly considered.
-
-
-
Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns
More LessThe rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of ‘the uncultured microbial majority’ has now revealed enormous taxonomic diversity among ‘dark’ and ‘rare’ actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify ‘gifted’ organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.
-
-
-
Awakening ancient polar Actinobacteria: diversity, evolution and specialized metabolite potential
Polar and subpolar ecosystems are highly vulnerable to global climate change with consequences for biodiversity and community composition. Bacteria are directly impacted by future environmental change and it is therefore essential to have a better understanding of microbial communities in fluctuating ecosystems. Exploration of Polar environments, specifically sediments, represents an exciting opportunity to uncover bacterial and chemical diversity and link this to ecosystem and evolutionary parameters. In terms of specialized metabolite production, the bacterial order Actinomycetales , within the phylum Actinobacteria are unsurpassed, producing 10 000 specialized metabolites accounting for over 45 % of all bioactive microbial metabolites. A selective isolation approach focused on spore-forming Actinobacteria of 12 sediment cores from the Antarctic and sub-Arctic generated a culture collection of 50 strains. This consisted of 39 strains belonging to rare A ctinomycetales genera including Microbacterium, Rhodococcus and Pseudonocardia . This study used a combination of nanopore sequencing and molecular networking to explore the community composition, culturable bacterial diversity, evolutionary relatedness and specialized metabolite potential of these strains. Metagenomic analyses using MinION sequencing was able to detect the phylum Actinobacteria across polar sediment cores at an average of 13 % of the total bacterial reads. The resulting molecular network consisted of 1652 parent ions and the lack of known metabolite identification supports the argument that Polar bacteria are likely to produce previously unreported chemistry.
-
-
-
A review of allelopathy on microalgae
More LessAlgal blooms have severe impacts on the utilization of water resources. The discovery of allelopathy provides a new dimension to solving this problem due to its high efficiency, safety and economy. Allelopathy can suppress the growth of microalgae by impairing the structure, photosynthesis and enzyme activity of algal cells. In the current work, we first demonstrate the allelopathy and allelochemicals derived from both plants and algae. We then expound the potential mechanisms of allelopathy on microalgae. Next, the potential application of allelochemicals in water environment is proposed. Finally, the key challenge and future perspective are presented.
-
-
-
Dynamics of acute Montipora white syndrome: bacterial communities of healthy and diseased M. capitata colonies during and after a disease outbreak
Coral diseases contribute to the decline of coral reefs globally and threaten the health and future of coral reef communities. Acute Montipora white syndrome (aMWS) is a tissue loss disease that has led to the mortality of hundreds of Montipora capitata colonies in Kāne‘ohe Bay, Hawai‘i in recent years. This study describes the analysis of coral-associated bacterial communities using high-throughput sequencing generated by the PacBio RSII platform. Samples from three health states of M. capitata (healthy, healthy-diseased and diseased) were collected during an ongoing aMWS outbreak and a non-outbreak period and the bacterial communities were identified to determine whether a shift in community structure had occurred between the two periods. The bacterial communities associated with outbreak and non-outbreak samples were significantly different, and one major driver was a high abundance of operational taxonomic units (OTUs) identified as Escherichia spp. in the outbreak sequences. In silico bacterial source tracking suggested this OTU was likely from sewage contamination of livestock, rather than human, origin. The most abundant coliform OTU was a culturable E. fergusonii isolate, strain OCN300, however, it did not induce disease signs on healthy M. capitata colonies when used in laboratory infection trials. In addition, screening of the sequencing output found that the most abundant OTUs corresponded to previously described M. capitata pathogens. The synergistic combination of known coral pathogens, sewage contaminants and other stressors, such as fluctuating seawater temperatures and bacterial pathogens, have the potential to escalate the deterioration of coral reef ecosystems.
-
-
-
The role of inter-species interactions in Salinispora specialized metabolism
Bacterial genome sequences consistently contain many more biosynthetic gene clusters encoding specialized metabolites than predicted by the compounds discovered from the respective strains. One hypothesis invoked to explain the cryptic nature of these gene clusters is that standard laboratory conditions do not provide the environmental cues needed to trigger gene expression. A potential source of such cues is other members of the bacterial community, which are logical targets for competitive interactions. In this study, we examined the effects of such interactions on specialized metabolism in the marine actinomycete Salinispora tropica. The results show that antibiotic activities and the concentration of some small molecules increase in the presence of co-occurring bacterial strains relative to monocultures. Some increases in antibiotic activity could be linked to nutrient depletion by the competitor as opposed to the production of a chemical cue. Other increases were correlated with the production of specific compounds by S. tropica. In particular, one interaction with a Vibrio sp. consistently induced antibiotic activity and was associated with parent ions that were unique to this interaction, although the associated compound could not be identified. This study provides insight into the metabolomic complexities of bacterial interactions and baseline information for future genome mining efforts.
-
-
-
Insights into the initiation of chromosome II replication of the pressure-loving deep-sea bacterium Photobacterium profundum SS9
More LessHow DNA metabolism is adapted to survival of organisms such as the bacterium Photobacterium profundum SS9 at high pressure is unknown. Previously, a high pressure-sensitive P. profundum SS9 transposon mutant (FL31) was identified, with an insertion in a putative rctB gene. The Vibrio cholerae RctB protein is essential for replication initiation at the origin of chromosome II, oriCII. Using a plasmid-based system in E. coli we have identified the replication origin of chromosome II from P. profundum SS9 and have shown that the putative rctB gene, disrupted in FL31, is essential for oriCII function. Moreover, we found that a region corresponding to the V. cholerae oriCII incompatibility region (incII) exerts an inhibitory effect on P. profundum oriCII. The truncated rctB gene in FL31 confers insensitivity to incII inhibition, indicating that the C-terminus of RctB is important for the negative regulation of replication. The RctB proteins of V. cholerae and P. profundum are partially interchangeable, but full functionality is achieved only with the cognate origin. Our findings provide the first characterization of the replication origin of chromosome II in a deep-sea bacterium.
-
-
-
Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica
Iridescence is an original type of colouration that is relatively widespread in nature but has been either incompletely described or entirely neglected in prokaryotes. Recently, we reported a brilliant ‘pointillistic’ iridescence in agar-grown colony biofilms of Cellulophaga lytica and some other marine Flavobacteria that exhibit gliding motility. Bacterial iridescence is created by a unique self-organization of sub-communities of cells, but the mechanisms underlying such living photonic crystals are unknown. In this study, we used Petri dish assays to screen a large panel of potential activators or inhibitors of C. lytica’s iridescence. Derivatives potentially interfering with quorum-sensing and other communication or biofilm formation processes were tested, as well as metabolic poisons or algal exoproducts. We identified an indole derivative, 5-hydroxyindole (5HI, 250 µM) which inhibited both gliding and iridescence at the colonial level. 5HI did not affect growth or cell respiration. At the microscopic level, phase-contrast imaging confirmed that 5HI inhibits the gliding motility of cells. Moreover, the lack of iridescence correlated with a perturbation of self-organization of the cell sub-communities in both the WT and a gliding-negative mutant. This effect was proved using recent advances in machine learning (deep neuronal networks). In addition to its effect on colony biofilms, 5HI was found to stimulate biofilm formation in microplates. Our data are compatible with possible roles of 5HI or marine analogues in the eco-biology of iridescent bacteria.
-