1887

Abstract

the aetiological agent of cholera, possesses multiple iron acquisition systems, including those for the transport of siderophores. How these systems benefit in low-iron, polymicrobial communities in environmental settings or during infection remains poorly understood. Here, we demonstrate that in iron-limiting conditions, co-culture of with a number of individual siderophore-producing microbes significantly promoted growth . We further show that in the host environment with low iron, colonizes better in adult mice in the presence of the siderophore-producing commensal . Taken together, our results suggest that in aquatic reservoirs or during infection, may overcome environmental and host iron restriction by hijacking siderophores from other microbes.

Funding
This study was supported by the:
  • National Institutes of Health (Award AI137283)
    • Principle Award Recipient: Hyuntae Byun
  • National Institutes of Health (Award AI120489)
    • Principle Award Recipient: Hyuntae Byun
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000975
2020-10-19
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/11/1038.html?itemId=/content/journal/micro/10.1099/mic.0.000975&mimeType=html&fmt=ahah

References

  1. Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 2007; 71:413–451 [View Article][PubMed]
    [Google Scholar]
  2. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep 2010; 27:637–657 [View Article][PubMed]
    [Google Scholar]
  3. Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol 2004; 2:946–953 [View Article][PubMed]
    [Google Scholar]
  4. Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 2010; 6:e1000949 [View Article][PubMed]
    [Google Scholar]
  5. Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe 2013; 13:509–519 [View Article][PubMed]
    [Google Scholar]
  6. Weinberg ED. Nutritional immunity. host's attempt to withold iron from microbial invaders. JAMA 1975; 231:39–41 [View Article][PubMed]
    [Google Scholar]
  7. Harris JB, LaRocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet 2012; 379:2466–2476 [View Article][PubMed]
    [Google Scholar]
  8. Reidl J, Klose KE. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 2002; 26:125–139 [View Article][PubMed]
    [Google Scholar]
  9. Liu Z, Wang H, Zhou Z, Naseer N, Xiang F et al. Differential thiol-based switches jump-start Vibrio cholerae pathogenesis. Cell Rep 2016; 14:347–354 [View Article][PubMed]
    [Google Scholar]
  10. Liu Z, Yang M, Peterfreund GL, Tsou AM, Selamoglu N et al. Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci U S A 2011; 108:810–815 [View Article][PubMed]
    [Google Scholar]
  11. Thomson JJ, Withey JH. Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters. J Bacteriol 2014; 196:3872–3880 [View Article][PubMed]
    [Google Scholar]
  12. Yang M, Liu Z, Hughes C, Stern AM, Wang H et al. Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence. Proc Natl Acad Sci U S A 2013; 110:2348–2353 [View Article][PubMed]
    [Google Scholar]
  13. Cameron EA, Sperandio V. Frenemies: signaling and nutritional integration in pathogen-microbiota-host interactions. Cell Host Microbe 2015; 18:275–284 [View Article][PubMed]
    [Google Scholar]
  14. Hsiao A, Ahmed AS, Subramanian S, Griffin NW, Drewry LL et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 2014; 515:423–426 [View Article][PubMed]
    [Google Scholar]
  15. Liu Z, Wang H, Zhou Z, Sheng Y, Naseer N et al. Thiol-Based switch mechanism of virulence regulator AphB modulates oxidative stress response in Vibrio cholerae. Mol Microbiol 2016; 102:939–949 [View Article][PubMed]
    [Google Scholar]
  16. Stern AM, Hay AJ, Liu Z, Desland FA, Zhang J et al. The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. mBio 2012; 3:e00013-12 [View Article][PubMed]
    [Google Scholar]
  17. Zhao W, Caro F, Robins W, Mekalanos JJ. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 2018; 359:210–213 [View Article][PubMed]
    [Google Scholar]
  18. Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 2019; 83: [View Article][PubMed]
    [Google Scholar]
  19. Sigel SP, Payne SM. Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae. J Bacteriol 1982; 150:148–155 [View Article][PubMed]
    [Google Scholar]
  20. Patel M, Isaäcson M. The effect of iron on the survival of Vibrio cholerae O1 in dechlorinated tap water. Trans R Soc Trop Med Hyg 1994; 88:296–297 [View Article][PubMed]
    [Google Scholar]
  21. Wyckoff EE, Mey AR, Leimbach A, Fisher CF, Payne SM. Characterization of ferric and ferrous iron transport systems in Vibrio cholerae. J Bacteriol 2006; 188:6515–6523 [View Article][PubMed]
    [Google Scholar]
  22. Henderson DP, Payne SM. Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins. J Bacteriol 1994; 176:3269–3277 [View Article][PubMed]
    [Google Scholar]
  23. Mey AR, Payne SM. Haem utilization in Vibrio cholerae involves multiple TonB-dependent haem receptors. Mol Microbiol 2001; 42:835–849 [View Article][PubMed]
    [Google Scholar]
  24. Stoebner JA, Payne SM. Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun 1988; 56:2891–2895 [View Article][PubMed]
    [Google Scholar]
  25. Seliger SS, Mey AR, Valle AM, Payne SM. The two TonB systems of Vibrio cholerae: redundant and specific functions. Mol Microbiol 2001; 39:801–812 [View Article][PubMed]
    [Google Scholar]
  26. Rogers MB, Sexton JA, DeCastro GJ, Calderwood SB. Identification of an operon required for ferrichrome iron utilization in Vibrio cholerae. J Bacteriol 2000; 182:2350–2353 [View Article][PubMed]
    [Google Scholar]
  27. Wyckoff EE, Allred BE, Raymond KN, Payne SM. Catechol siderophore transport by Vibrio cholerae. J Bacteriol 2015; 197:2840–2849 [View Article][PubMed]
    [Google Scholar]
  28. Mey AR, Wyckoff EE, Oglesby AG, Rab E, Taylor RK et al. Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect Immun 2002; 70:3419–3426 [View Article][PubMed]
    [Google Scholar]
  29. Wyckoff EE, Valle AM, Smith SL, Payne SM. A multifunctional ATP-binding cassette transporter system from Vibrio cholerae transports vibriobactin and enterobactin. J Bacteriol 1999; 181:7588–7596 [View Article][PubMed]
    [Google Scholar]
  30. Joelsson A, Liu Z, Zhu J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect Immun 2006; 74:1141–1147 [View Article][PubMed]
    [Google Scholar]
  31. Lasaro M, Liu Z, Bishar R, Kelly K, Chattopadhyay S et al. Escherichia coli isolate for studying colonization of the mouse intestine and its application to two-component signaling knockouts. J Bacteriol 2014; 196:1723–1732 [View Article][PubMed]
    [Google Scholar]
  32. Lasaro MA, Salinger N, Zhang J, Wang Y, Zhong Z et al. F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol 2009; 75:246–251 [View Article][PubMed]
    [Google Scholar]
  33. Dalia AB, McDonough E, Camilli A. Multiplex genome editing by natural transformation. Proc Natl Acad Sci U S A 2014; 111:8937–8942 [View Article][PubMed]
    [Google Scholar]
  34. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006-–20068 [View Article]
    [Google Scholar]
  35. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 2006; 3:623–628 [View Article][PubMed]
    [Google Scholar]
  36. Wang Y, Wang H, Liang W, Hay AJ, Zhong Z et al. Quorum sensing regulatory cascades control Vibrio fluvialis pathogenesis. J Bacteriol 2013; 195:3583–3589 [View Article][PubMed]
    [Google Scholar]
  37. Vaara T, Vaara M, Niemelä S. Two improved methods for obtaining axenic cultures of cyanobacteria. Appl Environ Microbiol 1979; 38:1011–1014 [View Article][PubMed]
    [Google Scholar]
  38. Haury JF, Spiller HA. Fructose uptake and influence on growth of and nitrogen fixation by Anabaena variabilis. J Bacteriol 1981; 147:227–235 [View Article][PubMed]
    [Google Scholar]
  39. Amadio J, Gordon K, Murphy CD. Biotransformation of flurbiprofen by Cunninghamella species. Appl Environ Microbiol 2010; 76:6299–6303 [View Article][PubMed]
    [Google Scholar]
  40. Raymond KN, Dertz EA, Kim SS. Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci U S A 2003; 100:3584–3588 [View Article][PubMed]
    [Google Scholar]
  41. Payne SM, Mey AR, Wyckoff EE. Vibrio iron transport: evolutionary adaptation to life in multiple environments. Microbiol Mol Biol Rev 2016; 80:69–90 [View Article][PubMed]
    [Google Scholar]
  42. Tandon SK, Khandelwal S. Chelation in metal intoxication XII. Arch Toxicol 1982; 50:19–25 [View Article]
    [Google Scholar]
  43. Payne SM, Mey AR, Crosa JH. Iron Transport in Bacteria Washington, DC: ASM press; 2004
    [Google Scholar]
  44. Dahm C, Müller R, Schulte G, Schmidt K, Leistner E. The role of isochorismate hydroxymutase genes entC and menF in enterobactin and menaquinone biosynthesis in Escherichia coli. Biochim Biophys Acta 1998; 1425:377–386 [View Article][PubMed]
    [Google Scholar]
  45. Hsiao A, Liu Z, Joelsson A, Zhu J. Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci U S A 2006; 103:14542–14547 [View Article][PubMed]
    [Google Scholar]
  46. Wyckoff EE, Mey AR, Payne SM. Iron acquisition in Vibrio cholerae. Biometals 2007; 20:405–416 [View Article][PubMed]
    [Google Scholar]
  47. Garringer HJ, Irimia JM, Li W, Goodwin CB, Richine B et al. Effect of systemic iron overload and a chelation therapy in a mouse model of the neurodegenerative disease hereditary ferritinopathy. PLoS One 2016; 11:e0161341 [View Article][PubMed]
    [Google Scholar]
  48. Hadziahmetovic M, Song Y, Wolkow N, Iacovelli J, Grieco S et al. The oral iron chelator deferiprone protects against iron overload-induced retinal degeneration. Invest Ophthalmol Vis Sci 2011; 52:959–968 [View Article][PubMed]
    [Google Scholar]
  49. Hackbusch S, Wichels A, Gimenez L, Döpke H, Gerdts G. Potentially human pathogenic Vibrio spp. in a coastal transect: occurrence and multiple virulence factors. Sci Total Environ 2020; 707:136113 [View Article][PubMed]
    [Google Scholar]
  50. Islam MS, Zaman MH, Islam MS, Ahmed N, Clemens JD. Environmental reservoirs of Vibrio cholerae. Vaccine 2020; 38 Suppl 1:A52–A62 [View Article][PubMed]
    [Google Scholar]
  51. Taneja N, Mishra A, Batra N, Gupta P, Mahindroo J et al. Inland cholera in freshwater environs of North India. Vaccine 2020; 38 Suppl 1:A63–A72 [View Article][PubMed]
    [Google Scholar]
  52. Aleksandrova K, Romero-Mosquera B, Hernandez V. Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients 2017; 9:962 [View Article][PubMed]
    [Google Scholar]
  53. Ganz T. Iron and infection. Int J Hematol 2018; 107:7–15 [View Article][PubMed]
    [Google Scholar]
  54. Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 2010; 14:218–224 [View Article][PubMed]
    [Google Scholar]
  55. Ganz T, Nemeth E. Regulation of iron acquisition and iron distribution in mammals. Biochim Biophys Acta 2006; 1763:690–699 [View Article][PubMed]
    [Google Scholar]
  56. Furrer JL, Sanders DN, Hook-Barnard IG, McIntosh MA. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 2002; 44:1225–1234 [View Article][PubMed]
    [Google Scholar]
  57. Funahashi T, Tanabe T, Miyamoto K, Tsujibo H, Maki J et al. Characterization of a gene encoding the outer membrane receptor for ferric enterobactin in Aeromonas hydrophila ATCC 7966T. Biosci Biotechnol Biochem 2013; 77:353–360 [View Article][PubMed]
    [Google Scholar]
  58. Joshi F, Archana G, Desai A. Siderophore cross-utilization amongst rhizospheric bacteria and the role of their differential affinities for Fe3+ on growth stimulation under iron-limited conditions. Curr Microbiol 2006; 53:141–147 [View Article][PubMed]
    [Google Scholar]
  59. Tomaras AP, Crandon JL, McPherson CJ, Banevicius MA, Finegan SM et al. Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:4197–4207 [View Article][PubMed]
    [Google Scholar]
  60. Yamanaka K, Oikawa H, Ogawa HO, Hosono K, Shinmachi F et al. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 2005; 151:2899–2905 [View Article][PubMed]
    [Google Scholar]
  61. Champomier-Vergès MC, Stintzi A, Meyer JM. Acquisition of iron by the non-siderophore-producing Pseudomonas fragi. Microbiology 1996; 142:1191–1199 [View Article][PubMed]
    [Google Scholar]
  62. Jiang HB, Lou WJ, Ke WT, Song WY, Price NM et al. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake. ISME J 2015; 9:297–309 [View Article][PubMed]
    [Google Scholar]
  63. Miethke M, Kraushaar T, Marahiel MA. Uptake of xenosiderophores in Bacillus subtilis occurs with high affinity and enhances the folding stabilities of substrate binding proteins. FEBS Lett 2013; 587:206–213 [View Article][PubMed]
    [Google Scholar]
  64. Rudolf M, Kranzler C, Lis H, Margulis K, Stevanovic M et al. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol Microbiol 2015; 97:577–588 [View Article][PubMed]
    [Google Scholar]
  65. Kramer J, Ö Özkaya, Kümmerli R. Bacterial siderophores in community and host interactions. Nat Rev Microbiol 20191–2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000975
Loading
/content/journal/micro/10.1099/mic.0.000975
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error