1887

Abstract

The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the , and sp. We observed seasonal differences on actinobacteria recovery. For instance, strains were recovered during the four sampling seasons, while and were only isolated in February 2018, and and were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.

Funding
This study was supported by the:
  • Secretaría de Educación Pública-PRODEP-México (Award UABC-PTC-676)
    • Principle Award Recipient: NatalieMillán-Aguiñaga
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001144
2022-02-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/2/mic001144.html?itemId=/content/journal/micro/10.1099/mic.0.001144&mimeType=html&fmt=ahah

References

  1. Contreras EF. Lagunas Costeras Mexicanas: Centro de Ecodesarrollo México D.F: Secretaría de Pesca; 1985 p 253
    [Google Scholar]
  2. Carranza-Edwards A, Bocanegra-Garcı́a G, Rosales-Hoz L, de Pablo Galán L. Beach sands from Baja California Peninsula, Mexico. Sedimentary Geology 1998; 119:263–274 [View Article]
    [Google Scholar]
  3. Swartz SL, Jones ML. Gray whale (Eschrichtius robustus) calf production and mortality in the winter range. Report of the International Whaling Commission 1983; 33:503–507
    [Google Scholar]
  4. Carmona R, Danemann GD. Spatiotemporal distribution of birds at the guerrero negro saltworks, Baja California Sur, Mexico. Cienc Mar 1998; 24:389–408 [View Article]
    [Google Scholar]
  5. Danemann GD, Carmona R, Fernandez G. Migratory shorebirds in the Guerrero Negro Saltworks Baja California Sur, Mexico: Bulletin-Wader Study Group; 2002 pp 36–41
    [Google Scholar]
  6. De Luna CJ, Rosales-Hoz L. Heavy metals in tissues of gray whales Eschrichtius robustus, and in sediments of Ojo de Liebre Lagoon in Mexico. Bull Environ Contam Toxicol 2004; 72:460–466 [View Article] [PubMed]
    [Google Scholar]
  7. Carmona R, Arce N, Ayala-Perez V, Danemann GD. Abundance and phenology of Red Knots in the Guerrero Negro-Ojo de Liebre coastal lagoon complex Baja California Sur, Mexico: Bulletin-Wader Study Group; 2008 p 115
    [Google Scholar]
  8. Castillo-Guerrero JA, Fernández G, Arellano G, Mellink E. Diurnal abundance, foraging behavior and habitat use by non-breeding marbled godwits and willets at Guerrero Negro, Baja California Sur, México. Waterbirds 2009; 32:400–407 [View Article]
    [Google Scholar]
  9. Carmona R, Arce N, Ayala-Pérez V, Danemann GD. Seasonal abundance of shorebirds at the guerrero negro wetland complex, baja california, mexico. Wader Study Group Bulletin 2011; 118:40–48
    [Google Scholar]
  10. Shumilin E, Grajeda-Muñoz M, Silverberg N, Sapozhnikov D. Observations on trace element hypersaline geochemistry in surficial deposits of evaporation ponds of Exportadora de Sal, Guerrero Negro, Baja California Sur, Mexico. Marine Chemistry 2002; 79:133–153 [View Article]
    [Google Scholar]
  11. Spear JR, Ley RE, Berger AB, Pace NR. Complexity in natural microbial ecosystems: the Guerrero Negro experience. Biol Bull 2003; 204:168–173 [View Article] [PubMed]
    [Google Scholar]
  12. Puente Orozco JE, Cruz Chavez PR. Potencial económico del aviturismo en los cabos (economic potential of birding in los cabos). Revista Global de Negocios 2015; 3:29–43
    [Google Scholar]
  13. Salazar EP, Ceseña FIR, García AFT. Propuesta metodológica para medir el potencial turístico alternativo en áreas naturales protegidas: caso baja california sur, méxico. TURYDES: Revista sobre Turismo y Desarrollo local sostenible 2017; 10:27
    [Google Scholar]
  14. Ortiz-Lopez DG., Chávez-Dagostino RM, Cornejo-Ortega JL. Turismo de base comunitaria y responsabilidad social en los ejidos el jorullo y benito juárez, méxico. RITUR-Revista Iberoamericana de Turismo 201923–38 [View Article]
    [Google Scholar]
  15. Picasso Salazar E, Ruiz Ceseña FI, Torres García AF. Análisis de oportunidades para el desarrollo de actividades de turismo alternativo en la región norte de Baja California Sur (México). 3C Empresa 2018; 7:32–48 [View Article]
    [Google Scholar]
  16. Troyo Vega B, Arnaud Franco G, Galina Tessaro P, Urbán Ramírez J, Swartz S et al. Evaluación del servicio turístico en el avistamiento de la ballena gris: Baja California Sur, México. EST 2018; 18:853–880 [View Article]
    [Google Scholar]
  17. Troyo-Vega B, Arnaud G, Swartz S, Ortega-Rubio A. Impacto Socioeconómico del Turismo de la ballena gris (Eschrichtius robustus), en dos localidades de la Reserva de la Biosfera El Vizcaíno, Baja California Sur, México. PS 2019; 36:157 [View Article]
    [Google Scholar]
  18. Valle-Meza G, González-Ortiz L. Epifauna asociada a la almeja concha espina (Spondylus crassisquama) lamarck, en la laguna ojo de liebre, baja california sur. UNIVERSITAM Revista Internacional de Ciencia 2019; 1:24–33 [View Article]
    [Google Scholar]
  19. Millán-Núñez R, Ripa-Soleno E, Aguirre-Buenfil LA. Preliminary study of the composition and abundance of the phytoplankton and chlorophytes in Laguna Ojo De Liebre, BCS. Cienc Mar 1987; 13:30–38 [View Article]
    [Google Scholar]
  20. Arellano-Martínez M, Racotta IS, Ceballos-Vázquez BP, Elorduy-Garay JF. Biochemical composition, reproductive activity and food availability of the lion’s paw scallop nodipecten subnodosus in the laguna ojo de liebre, baja california sur, mexico. J Shellfish Res 2004; 23:15–23
    [Google Scholar]
  21. Arellano-Martínez M, Ceballos-Vázquez BP, Ruíz-Verdugo C, Pérez de León E, Cervantes-Duarte R et al. Growth and reproduction of the lion’s paw scallop Nodipecten subnodosus in a suspended culture system at Guerrero Negro lagoon, Baja California Sur, Mexico. Aquac Res 2011; 42:571–582 [View Article]
    [Google Scholar]
  22. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K et al. Road Map of the Phylum Actinobacteria. Bergey’s Manual of Systematic Bacteriology New York, NY: Springer; 2012 pp 1–28 [View Article]
    [Google Scholar]
  23. Qin S, Xing K, Jiang JH, Xu LH, Li WJ. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 2011; 89:457–473 [View Article] [PubMed]
    [Google Scholar]
  24. Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine rare actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Front Microbiol 2017; 8:1106 [View Article] [PubMed]
    [Google Scholar]
  25. Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018; 111:1315–1332 [View Article] [PubMed]
    [Google Scholar]
  26. Macagnan D, Romeiro R da S, de Souza JT, Pomella AWV. Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica 2006; 34:122–132 [View Article]
    [Google Scholar]
  27. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80:1–43 [View Article] [PubMed]
    [Google Scholar]
  28. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392–416 [View Article] [PubMed]
    [Google Scholar]
  29. Jakimowicz D, van Wezel GP. Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere?. Mol Microbiol 2012; 85:393–404 [View Article] [PubMed]
    [Google Scholar]
  30. Goodfellow M, Lacey J, Todd C. Numerical classification of thermophilic streptomycetes. Microbiology 1987; 133:3135–3149 [View Article]
    [Google Scholar]
  31. Bull AT, Stach JEM. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 2007; 15:491–499 [View Article] [PubMed]
    [Google Scholar]
  32. Solecka J, Zajko J, Postek M, Rajnisz A. Biologically active secondary metabolites from Actinomycetes. Open Life Sci 2012; 7:373–390 [View Article]
    [Google Scholar]
  33. Hoskisson PA, Fernández-Martínez LT. Regulation of specialised metabolites in Actinobacteria - expanding the paradigms. Environ Microbiol Rep 2018; 10:231–238 [View Article] [PubMed]
    [Google Scholar]
  34. Waksman SA, Tishler M. The chemical nature of actinomycin, an anti-microbial substance produced by actinomyces antibioticus. Journal of Biological Chemistry 1942; 142:519–528 [View Article]
    [Google Scholar]
  35. Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005; 58:1–26 [View Article] [PubMed]
    [Google Scholar]
  36. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y et al. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 2015; 33:15–26 [View Article] [PubMed]
    [Google Scholar]
  37. Kim HJ, Jang JY, Han CY, Choi SS, Kim ES. Application of antifungal polyene post-pks biosynthesis in rare actinomycetes pseudonocardia autotrophica. Natural Product Discovery and Development in the Genomic Era 2018
    [Google Scholar]
  38. Bream AS, Ghazal SA, Abd el-Aziz ZK, Ibrahim SY. Insecticidal activity of selected actinomycete strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet 2001; 66:503–512 [PubMed]
    [Google Scholar]
  39. Gong Y, Chen L-J, Pan S-Y, Li X-W, Xu M-J et al. Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere 2020; 16:100262 [View Article]
    [Google Scholar]
  40. Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 2018; 67:259–272 [View Article]
    [Google Scholar]
  41. Tao H, Zhang Y, Deng Z, Liu T. Strategies for enhancing the yield of the potent insecticide spinosad in actinomycetes. Biotechnol J 2019; 14:e1700769 [View Article]
    [Google Scholar]
  42. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 2015; 4:1020–1029 [View Article]
    [Google Scholar]
  43. Omura S, Takahashi Y, Iwai Y, Tanaka H. Kitasatosporia, a new genus of the order Actinomycetales . J Antibiot 1982; 35:1013–1019 [View Article]
    [Google Scholar]
  44. Kageyama A, Takahashi Y, Matsuo Y, Kasai H, Shizuri Y et al. Microbacterium sediminicola sp. nov. and Microbacterium marinilacus sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2007; 57:2355–2359 [View Article]
    [Google Scholar]
  45. Lee SD. Marmoricola aequoreus sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2007; 57:1391–1395 [View Article] [PubMed]
    [Google Scholar]
  46. Bian J, Li Y, Wang J, Song F-H, Liu M et al. Amycolatopsis marina sp. nov., an actinomycete isolated from an ocean sediment. Int J Syst Evol Microbiol 2009; 59:477–481 [View Article] [PubMed]
    [Google Scholar]
  47. Hu H, Lin HP, Xie Q, Li L, Xie XQ et al. Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62:596–600 [View Article] [PubMed]
    [Google Scholar]
  48. Veyisoglu A, Sazak A, Cetin D, Guven K, Sahin N. Saccharomonospora amisosensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 2013; 63:3782–3786 [View Article] [PubMed]
    [Google Scholar]
  49. Ahmed L, Jensen PR, Freel KC, Brown R, Jones AL et al. Salinispora pacifica sp. nov., an actinomycete from marine sediments. Antonie van Leeuwenhoek 2013; 103:1069–1078 [View Article] [PubMed]
    [Google Scholar]
  50. Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P et al. Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:4417–4423 [View Article] [PubMed]
    [Google Scholar]
  51. Deng S, Chang X, Zhang Y, Ren L, Jiang F et al. Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:2615–2621 [View Article] [PubMed]
    [Google Scholar]
  52. Terahara T, Naemura T, Nampo Y, Kobayashi T, Imada C et al. Streptomyces otsuchiensis sp. nov., a biosurfactant-producing actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2019; 69:3740–3744 [View Article] [PubMed]
    [Google Scholar]
  53. Iniyan AM, Wink J, Landwehr W, Ramprasad EVV, Sasikala C et al. Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India. J Antibiot (Tokyo) 2021; 74:59–69 [View Article] [PubMed]
    [Google Scholar]
  54. Subramani R, Sipkema D. Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products. Mar Drugs 2019; 17:E249 [View Article] [PubMed]
    [Google Scholar]
  55. Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W et al. Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 2008; 3:e2335 [View Article] [PubMed]
    [Google Scholar]
  56. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 2003; 42:355–357 [View Article] [PubMed]
    [Google Scholar]
  57. Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 2007; 73:1146–1152 [View Article] [PubMed]
    [Google Scholar]
  58. Mincer TJ, Jensen PR, Kauffman CA, Fenical W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 2002; 68:5005–5011 [View Article] [PubMed]
    [Google Scholar]
  59. Millán-Aguiñaga N, Soldatou S, Brozio S, Munnoch JT, Howe J et al. Awakening ancient polar Actinobacteria: diversity, evolution and specialized metabolite potential. Microbiology (Reading) 2019; 165:1169–1180 [View Article] [PubMed]
    [Google Scholar]
  60. Duncan KR, Crüsemann M, Lechner A, Sarkar A, Li J et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 2015; 22:460–471 [View Article] [PubMed]
    [Google Scholar]
  61. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010; 11:1–11 [View Article] [PubMed]
    [Google Scholar]
  62. Myers OD, Sumner SJ, Li S, Barnes S, Du X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal Chem 2017; 89:8696–8703 [View Article] [PubMed]
    [Google Scholar]
  63. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016; 34:828–837 [View Article] [PubMed]
    [Google Scholar]
  64. Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods 2020; 17:905–908 [View Article] [PubMed]
    [Google Scholar]
  65. Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias L-F, Wandy J et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 2019; 9:E144 [View Article]
    [Google Scholar]
  66. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13:2498–2504 [View Article]
    [Google Scholar]
  67. Oroz-Parra I, Álvarez-Delgado C, Cervantes-Luevano K, Dueñas-Espinoza S, Licea-Navarro AF. Proapoptotic index evaluation of two synthetic peptides derived from the coneshell Californiconus californicus in lung cancer cell line H1299. Mar Drugs 2019; 18:E10 [View Article]
    [Google Scholar]
  68. Anzai Y, Iizaka Y, Li W, Idemoto N, Tsukada S et al. Production of rosamicin derivatives in Micromonospora rosaria by introduction of D-mycinose biosynthetic gene with PhiC31-derived integration vector pSET152. J Ind Microbiol Biotechnol 2009; 36:1013–1021 [View Article] [PubMed]
    [Google Scholar]
  69. Callow RK, Taylor DAH. 429. The cardio-active glycosides of Strophanthus sarmentosus P.DC. “sarmentoside B” and its relation to an original sarmentobioside. J Chem Soc 1952; 0:2299–2304 [View Article]
    [Google Scholar]
  70. Tamilmani E, Radhakrishnan R, Sankaran K. 13-Docosenamide release by bacteria in response to glucose during growth-fluorescein quenching and clinical application. Appl Microbiol Biotechnol 2018; 102:6673–6685 [View Article]
    [Google Scholar]
  71. van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci 2019; 5:1824–1833 [View Article]
    [Google Scholar]
  72. Hou D, Huang Z, Zeng S, Liu J, Wei D et al. Environmental factors shape water microbial community structure and function in shrimp cultural enclosure ecosystems. Front Microbiol 2017; 8:2359 [View Article]
    [Google Scholar]
  73. Aguila Ramírez RN, Casas Valdez M, Ortega García S, Núñez López RA, Cruz Ayala MB. Spatial and seasonal variation of macroalgal biomass in Laguna Ojo de Liebre. Hydrobiologia 2003; 501:207–214 [View Article]
    [Google Scholar]
  74. Meseguer Soria I. Los microorganismos halófilos y su potencial aplicado en biotecnología. Ciencia e investigación 2004; 7:13–17 [View Article]
    [Google Scholar]
  75. Oren A. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers Conserv 2015; 24:781–798 [View Article]
    [Google Scholar]
  76. Ventosa A, Arahal DR. Physico-chemical characteristics of hypersaline environments and their biodiversity. Extremophiles 2009; 2:247–262
    [Google Scholar]
  77. Tang J, Zheng A, Bromfield ESP, Zhu J, Li S et al. 16S rRNA gene sequence analysis of halophilic and halotolerant bacteria isolated from a hypersaline pond in Sichuan, China. Ann Microbiol 2010; 61:375–381 [View Article]
    [Google Scholar]
  78. Baati H, Amdouni R, Gharsallah N, Sghir A, Ammar E. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr Microbiol 2010; 60:157–161 [View Article] [PubMed]
    [Google Scholar]
  79. Hedi A, Sadfi N, Fardeau ML, Rebib H, Cayol JL et al. Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid Salt Lake (Tunisia) under aerobic conditions. Int J Microbiol 2009; 2009:731786 [View Article] [PubMed]
    [Google Scholar]
  80. Xiang W, Guo J, Feng W, Huang M, Chen H et al. Community of extremely halophilic bacteria in historic Dagong Brine Well in southwestern China. World J Microbiol Biotechnol 2008; 24:2297–2305 [View Article]
    [Google Scholar]
  81. Yeon SH, Jeong WJ, Park JS. The diversity of culturable organotrophic bacteria from local solar salterns. Journal of Microbiology 2005; 43:1–10
    [Google Scholar]
  82. Jiang H, Dong H, Zhang G, Yu B, Chapman LR et al. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 2006; 72:3832–3845 [View Article] [PubMed]
    [Google Scholar]
  83. Tsiamis G, Katsaveli K, Ntougias S, Kyrpides N, Andersen G et al. Prokaryotic community profiles at different operational stages of a Greek solar saltern. Res Microbiol 2008; 159:609–627 [View Article] [PubMed]
    [Google Scholar]
  84. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 2006; 72:5478–5485 [View Article] [PubMed]
    [Google Scholar]
  85. Ballav S, Kerkar S, Thomas S, Augustine N. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J Biosci Bioeng 2015; 119:323–330 [View Article]
    [Google Scholar]
  86. Wu J, Guan T, Jiang H, Zhi X, Tang S et al. Diversity of Actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 2009; 13:623–632 [View Article] [PubMed]
    [Google Scholar]
  87. Swartz SL. Gray whale: eschrichtius robustus. en encyclopedia of marine mammals. Academic Press 2018422–428 [View Article]
    [Google Scholar]
  88. Sabry SA, Ghanem NB, Abu-Ella GA, Schumann P, Stackebrandt E et al. Nocardiopsis aegyptia sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2004; 54:453–456 [View Article] [PubMed]
    [Google Scholar]
  89. Torres-Beltrán M, Cardoso-Martínez F, Millán-Aguiñaga N, Becerril-Espinosa A, Soria-Mercado IE. Evaluación del golfo de california como una fuente potencial de actinobacterias marinas bioactivas. Ciencias Marinas 2012; 38:609–624 [View Article]
    [Google Scholar]
  90. Becerril-Espinosa A, Guerra-Rivas G, Ayala-Sánchez N, Soria-Mercado IE. Actividad antitumoral de actinobacterias aisladas de sedimento marino de la bahía de todos santos, baja california, méxico. Revista de biología marina y oceanografía 2012; 47:317–325 [View Article]
    [Google Scholar]
  91. Jensen PR, Mafnas C. Biogeography of the marine actinomycete Salinispora. Environ Microbiol 2006; 8:1881–1888 [View Article] [PubMed]
    [Google Scholar]
  92. Fenical W, Jensen PR. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2006; 2:666–673 [View Article] [PubMed]
    [Google Scholar]
  93. Tanasupawat S, Jongrungruangchok S, Kudo T. Micromonospora marina sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 2010; 60:648–652 [View Article] [PubMed]
    [Google Scholar]
  94. Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P et al. Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:4417–4423 [View Article]
    [Google Scholar]
  95. Zhao H, Kassama Y, Young M, Kell DB, Goodacre R. Differentiation of Micromonospora isolates from a coastal sediment in Wales on the basis of Fourier transform infrared spectroscopy, 16S rRNA sequence analysis, and the amplified fragment length polymorphism technique. Appl Environ Microbiol 2004; 70:6619–6627 [View Article] [PubMed]
    [Google Scholar]
  96. Weyland H. Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 1969; 223:858 [View Article]
    [Google Scholar]
  97. Weyland H. Distribution of actinomycetes on the sea floor. Zentrabl Bakteriol Suppl 1981; 11:
    [Google Scholar]
  98. Millán-Aguiñaga N, Chavarria KL, Ugalde JA, Letzel A-C, Rouse GW et al. Phylogenomic Insight into Salinispora (Bacteria, Actinobacteria) Species Designations. Sci Rep 2017; 7:3564 [View Article]
    [Google Scholar]
  99. Mateo-Estrada V, Graña-Miraglia L, López-Leal G, Castillo-Ramírez S. Phylogenomics reveals clear cases of misclassification and genus-wide phylogenetic markers for Acinetobacter. Genome Biol Evol 2019; 11:2531–2541 [View Article]
    [Google Scholar]
  100. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 2006; 33:152–155
    [Google Scholar]
  101. Beye M, Fahsi N, Raoult D, Fournier PE. Careful use of 16S rRNA gene sequence similarity values for the identification of Mycobacterium species. New Microbes New Infect 2018; 22:24–29 [View Article]
    [Google Scholar]
  102. Román-Ponce B, Millán-Aguiñaga N, Guillen-Matus D, Chase AB, Ginigini JGM et al. Six novel species of the obligate marine actinobacterium Salinispora, Salinispora cortesiana sp. nov., Salinispora fenicalii sp. nov., Salinispora goodfellowii sp. nov., Salinispora mooreana sp. nov., Salinispora oceanensis sp. nov. and Salinispora vitiensis sp. nov., and emended description of the genus Salinispora . Int J Syst Evol Microbiol 2020; 70:4668–4682 [View Article]
    [Google Scholar]
  103. Rossi-Tamisier M, Benamar S, Raoult D, Fournier PE. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 2015; 65:1929–1934 [View Article]
    [Google Scholar]
  104. Schorn MA, Alanjary MM, Aguinaldo K, Korobeynikov A, Podell S et al. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology 2016; 162:2075–2086 [View Article]
    [Google Scholar]
  105. Hifnawy MS, Fouda MM, Sayed AM, Mohammed R, Hassan HM et al. The genus Micromonospora as a model microorganism for bioactive natural product discovery. RSC Adv 2020; 10:20939–20959 [View Article]
    [Google Scholar]
  106. Cardoso-Martínez F, Becerril-Espinosa A, Barrila-Ortíz C, Torres-Beltrán M, Ocampo-Alvarez H et al. Antibacterial and cytotoxic bioactivity of marine actinobacteria from loreto bay national park, mexico. Hidrobiológica 2015; 25:223–229
    [Google Scholar]
  107. Silva A, Guimarães L, Ferreira E, Torres M da C, da Silva A et al. Bioprospecting anticancer compounds from the marine-derived actinobacteria Actinomadura sp. collected at the Saint Peter and Saint Paul Archipelago (Brazil). J Braz Chem Soc 2016; 28:465–474 [View Article]
    [Google Scholar]
  108. Han X-X, Cui C-B, Gu Q-Q, Zhu W-M, Liu H-B et al. ZHD-0501, a novel naturally occurring staurosporine analog from Actinomadura sp. 007. Tetrahedron Letters 2005; 46:6137–6140 [View Article]
    [Google Scholar]
  109. Maskey RP, Li FC, Qin S, Fiebig HH, Laatsch H. Chandrananimycins A approximately C: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiot (Tokyo) 2003; 56:622–629 [View Article] [PubMed]
    [Google Scholar]
  110. Crowe CC, Sanders WE Jr. Rosamicin: evaluation in vitro and comparison with erythromycin and lincomycin. Antimicrob Agents Chemother 1974; 5:272–275 [View Article] [PubMed]
    [Google Scholar]
  111. Huong NL, Hoang NH, Shrestha A, Sohng JK, Yoon YJ et al. Biotransformation of rosamicin antibiotic into 10,11-dihydrorosamicin with enhanced in vitro antibacterial activity against MRSA. J Microbiol Biotechnol 2014; 24:44–47 [View Article] [PubMed]
    [Google Scholar]
  112. Anzai Y, Sakai A, Li W, Iizaka Y, Koike K et al. Isolation and characterization of 23-O-mycinosyl-20-dihydro-rosamicin: a new rosamicin analogue derived from engineered Micromonospora rosaria . J Antibiot (Tokyo) 2010; 63:325–328 [View Article] [PubMed]
    [Google Scholar]
  113. Wibowo JT, Kellermann MY, Versluis D, Putra MY, Murniasih T et al. Biotechnological potential of bacteria isolated from the sea cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia. Mar Drugs 2019; 17:E635 [View Article] [PubMed]
    [Google Scholar]
  114. Dwivedi A, Kumar A, Bhat JL. Production and characterization of biosurfactant from corynebacterium species and its effect on the growth of petroleum degrading bacteria. Microbiology 2019; 88:87–93 [View Article]
    [Google Scholar]
  115. Chen Y, Zhou D, Qi D, Gao Z, Xie J et al. Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from Banana Rhizosphere Soil. Front Microbiol 2017; 8:2704 [View Article] [PubMed]
    [Google Scholar]
  116. Ding T, Yang LJ, Zhang WD, Shen YH. The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 2019; 9:21964–21988 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001144
Loading
/content/journal/micro/10.1099/mic.0.001144
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error