- Volume 169, Issue 2, 2023
Volume 169, Issue 2, 2023
- Reviews
-
-
-
The type-VI secretion system of the beneficial symbiont Vibrio fischeri
More LessThe mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal–bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.
-
-
- Antimicrobials and AMR
-
-
-
Genome-wide analysis of genes involved in efflux function and regulation within Escherichia coli and Salmonella enterica serovar Typhimurium
More LessThe incidence of multidrug-resistant bacteria is increasing globally, with efflux pumps being a fundamental platform limiting drug access and synergizing with other mechanisms of resistance. Increased expression of efflux pumps is a key feature of most cells that are resistant to multiple antibiotics. Whilst expression of efflux genes can confer benefits, production of complex efflux systems is energetically costly and the expression of efflux is highly regulated, with cells balancing benefits against costs. This study used TraDIS-Xpress, a genome-wide transposon mutagenesis technology, to identify genes in Escherichia coli and Salmonella Typhimurium involved in drug efflux and its regulation. We exposed mutant libraries to the canonical efflux substrate acriflavine in the presence and absence of the efflux inhibitor phenylalanine-arginine β-naphthylamide. Comparisons between conditions identified efflux-specific and drug-specific responses. Known efflux-associated genes were easily identified, including acrAB, tolC, marRA, ramRA and soxRS, confirming the specificity of the response. Further genes encoding cell envelope maintenance enzymes and products involved with stringent response activation, DNA housekeeping, respiration and glutathione biosynthesis were also identified as affecting efflux activity in both species. This demonstrates the deep relationship between efflux regulation and other cellular regulatory networks. We identified a conserved set of pathways crucial for efflux activity in these experimental conditions, which expands the list of genes known to impact on efflux efficacy. Responses in both species were similar and we propose that these common results represent a core set of genes likely to be relevant to efflux control across the Enterobacteriaceae.
-
-
-
-
Prevalence of multidrug-resistant coagulase-positive staphylococci in canine and feline dermatological patients over a 10-year period: a retrospective study
More LessCoagulase-positive staphylococci (CPS) are common cutaneous pathogens often requiring multiple courses of antibiotics, which may facilitate selection for methicillin-resistant (MR) and/or multidrug-resistant (MDR) strains. To determine the prevalence of canine and feline MR/MDR CPS associated with skin diseases, medical records were retrospectively searched from April 2010 to April 2020. Pets with at least one positive culture for CPS were selected. Age, sex, antimicrobial sensitivity, previous history of antimicrobial/immunomodulatory medications and methicillin resistance/multidrug resistance status were recorded. Staphylococcus pseudintermedius (SP) (575/748) and Staphylococcus schleiferi (SS) (159/748) in dogs, and Staphylococcus aureus (12/22) in cats, were the most common CPS isolated. Three hundred and twenty-three out of 575 isolates were MR-SP (56.2 %), 304/575 were MDR-SP (52.8 %), 100/159 were MR-SS (62.9 %) and 71/159 were MDR-SS (44.6 %). A trend analysis showed a significant increase of resistance to oxacillin and chloramphenicol for S. pseudintermedius (r=0.86, 0.8; P=0.0007, 0.0034, respectively). Major risk factors for MDR-SP included oxacillin resistance (OR: 3; 95 % CI: 1.4–6.5; P=0.0044), positivity for PBP2a (OR: 2.3; 95 % CI: 1–5; P=0.031) and use of antibiotics in the previous year (OR: 2.8; 95 % CI: 1.3–5.8; P=0.0071). Oxacillin resistance was identified as a major risk factor for MDR-SS (OR: 8.8; 95 % CI: 3.6–21.1; P<0.0001). These results confirmed the widespread presence of MR/MDR CPS in referred dermatological patients. Judicious antibiotic use, surveillance for MR/MDR infections and consideration of alternative therapies are crucial in mitigating the development of resistant strains.
-
- Microbial Cell Surfaces
-
-
-
Characterization of a TatA/TatB binding site on the TatC component of the Escherichia coli twin arginine translocase
More LessThe twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In Escherichia coli and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon. The polytopic membrane protein TatC forms the core of the Tat receptor and harbours two binding sites for the sequence-related TatA and TatB proteins. A ‘polar’ cluster binding site, formed by TatC transmembrane helices (TMH) 5 and 6 is occupied by TatB in the resting receptor and exchanges for TatA during receptor activation. The second binding site, lying further along TMH6, is occupied by TatA in the resting state, but its functional relevance is unclear. Here we have probed the role of this second binding site through a programme of random and targeted mutagenesis. Characterization of three stably produced TatC variants, P221R, M222R and L225P, each of which is inactive for protein transport, demonstrated that the substitutions did not affect assembly of the Tat receptor. Moreover, the substitutions that we analysed did not abolish TatA or TatB binding to either binding site. Using targeted mutagenesis we introduced bulky substitutions into the TatA binding site. Molecular dynamics simulations and crosslinking analysis indicated that TatA binding at this site was substantially reduced by these amino acid changes, but TatC retained function. While it is not clear whether TatA binding at the TMH6 site is essential for Tat activity, the isolation of inactivating substitutions indicates that this region of the protein has a critical function.
-
-
-
-
Multiple roads lead to Rome: unique morphology and chemistry of endospores, exospores, myxospores, cysts and akinetes in bacteria
The production of specialized resting cells is a remarkable survival strategy developed by many organisms to withstand unfavourable environmental factors such as nutrient depletion or other changes in abiotic and/or biotic conditions. Five bacterial taxa are recognized to form specialized resting cells: Firmicutes, forming endospores; Actinobacteria, forming exospores; Cyanobacteria, forming akinetes; the δ-Proteobacterial order Myxococcales, forming myxospores; and Azotobacteraceae, forming cysts. All these specialized resting cells are characterized by low-to-absent metabolic activity and higher resistance to environmental stress (desiccation, heat, starvation, etc.) when compared to vegetative cells. Given their similarity in function, we tested the potential existence of a universal morpho-chemical marker for identifying these specialized resting cells. After the production of endospores, exospores, akinetes and cysts in model organisms, we performed the first cross-species morphological and chemical comparison of bacterial sporulation. Cryo-electron microscopy of vitreous sections (CEMOVIS) was used to describe near-native morphology of the resting cells in comparison to the morphology of their respective vegetative cells. Resting cells shared a thicker cell envelope as their only common morphological feature. The chemical composition of the different specialized resting cells at the single-cell level was investigated using confocal Raman microspectroscopy. Our results show that the different specialized cells do not share a common chemical signature, but rather each group has a unique signature with a variable conservation of the signature of the vegetative cells. Additionally, we present the validation of Raman signatures associated with calcium dipicolinic acid (CaDPA) and their variation across individual cells to develop specific sorting thresholds for the isolation of endospores. This provides a proof of concept of the feasibility of isolating bacterial spores using a Raman-activated cell-sorting platform. This cross-species comparison and the current knowledge of genetic pathways inducing the formation of the resting cells highlights the complexity of this convergent evolutionary strategy promoting bacterial survival.
-
- Microbial Interactions and Communities
-
-
-
Differences in fungal communities in the fur of two- and three-toed sloths revealed by ITS metabarcoding
More LessSloths have dense fur on which insects, algae, bacteria and fungi coexist. Previous studies using cultivation-dependent methods and 18S rRNA sequencing revealed that the fungal communities in their furs comprise members of the phyla Ascomycota and Basidiomycota. In this note, we increase the resolution and knowledge of the mycobiome inhabiting the fur of the two- (Choloepus hoffmanni) and three-toed (Bradypus variegatus) sloths. Targeted amplicon metagenomic analysis of ITS2 nrDNA sequences obtained from 10 individuals of each species inhabiting the same site revealed significant differences in the structure of their fungal communities and also in the alpha-diversity estimators. The results suggest a specialization by host species and that the host effect is stronger than that of sex, age and animal weight. Capnodiales were the dominant order in sloths’ fur and Cladosporium and Neodevriesia were the most abundant genera in Bradypus and Choloepus, respectively. The fungal communities suggest that the green algae that inhabit the fur of sloths possibly live lichenized with Ascomycota fungal species. The data shown in this note offer a more detailed view of the fungal content in the fur of these extraordinary animals and could help explain other mutualistic relationships in this complex ecosystem.
-
-
- Microbial Evolution
-
-
-
A coevolution experiment between Flavobacterium johnsoniae and Burkholderia thailandensis reveals parallel mutations that reduce antibiotic susceptibility
More LessOne interference mechanism of bacterial competition is the production of antibiotics. Bacteria exposed to antibiotics can resist antibiotic inhibition through intrinsic or acquired mechanisms. Here, we performed a coevolution experiment to understand the long-term consequences of antibiotic production and antibiotic susceptibility for two environmental bacterial strains. We grew five independent lines of the antibiotic-producing environmental strain, Burkholderia thailandensis E264, and the antibiotic-inhibited environmental strain, Flavobacterium johnsoniae UW101, together and separately on agar plates for 7.5 months (1.5 month incubations), transferring each line five times to new agar plates. We observed that the F. johnsoniae ancestor could tolerate the B. thailandensis -produced antibiotic through efflux mechanisms, but that the coevolved lines had reduced susceptibility. We then sequenced genomes from the coevolved and monoculture F. johnsoniae lines, and uncovered mutational ramifications for the long-term antibiotic exposure. The coevolved genomes from F. johnsoniae revealed four potential mutational signatures of reduced antibiotic susceptibility that were not observed in the evolved monoculture lines. Two mutations were found in tolC: one corresponding to a 33 bp deletion and the other corresponding to a nonsynonymous mutation. A third mutation was observed as a 1 bp insertion coding for a RagB/SusD nutrient uptake protein. The last mutation was a G83R nonsynonymous mutation in acetyl-coA carboxylayse carboxyltransferase subunit alpha (AccA). Deleting the 33 bp from tolC in the F. johnsoniae ancestor reduced antibiotic susceptibility, but not to the degree observed in coevolved lines. Furthermore, the accA mutation matched a previously described mutation conferring resistance to B. thailandensis -produced thailandamide. Analysis of B. thailandensis transposon mutants for thailandamide production revealed that thailandamide was bioactive against F. johnsoniae, but also suggested that additional B. thailandensis -produced antibiotics were involved in the inhibition of F. johnsoniae . This study reveals how multi-generational interspecies interactions, mediated through chemical exchange, can result in novel interaction-specific mutations, some of which may contribute to reductions in antibiotic susceptibility.
-
-
- Microbial Physiology, Biochemistry and Metabolism (formerly Physiology and Metabolism)
-
-
-
Methionyl-tRNA formyltransferase utilizes 10-formyldihydrofolate as an alternative substrate and impacts antifolate drug action
More LessMethionyl-tRNA formyltransferase (Fmt)-mediated formylation of Met-tRNAfMet to fMet-tRNAfMet is crucial for efficient initiation of translation in bacteria and the eukaryotic organelles. Folate dehydrogenase-cyclohydrolase (FolD), a bifunctional enzyme, carries out conversion of 5,10-methylene tetrahydrofolate (5,10-CH2-THF) to 10-formyl-THF (10-CHO-THF), a metabolite utilized by Fmt as a formyl group donor. In this study, using in vivo and in vitro approaches, we show that 10-CHO-DHF may also be utilized by Fmt as an alternative substrate (formyl group donor) to formylate Met-tRNAfMet. Dihydrofolate (DHF) formed as a by-product in the in vitro assay was verified by LC-MS/MS analysis. FolD-deficient mutants and Fmt over-expressing strains were more sensitive to trimethoprim (TMP) than the ∆fmt strain, suggesting that the domino effect of TMP leads to inhibition of protein synthesis and strain growth. Antifolate treatment to Escherichia coli showed a decrease in the reduced folate species (THF, 5,10-CH2-THF, 5-CH3-THF, 5,10-CH+-THF and 5-CHO-THF) and increase in the oxidized folate species (folic acid and DHF). In cells, 10-CHO-DHF and 10-CHO-folic acid were enriched in the stationary phase. This suggests that 10-CHO-DHF is a bioactive metabolite in the folate pathway for generating other folate intermediates and fMet-tRNAfMet.
-
-
- Microbial Physiology, Biochemistry and Metabolism
-
-
-
Role of Pel and Psl polysaccharides in the response of Pseudomonas aeruginosa to environmental challenges: oxidative stress agents (UVA, H2O2, sodium hypochlorite) and its competitor Staphylococcus aureus
More LessPseudomonas aeruginosa is a versatile bacterium capable of adapting to a wide range of stress factors, including solar UVA radiation (400–315 nm). High UVA doses produce lethal effects due to the action of reactive oxygen species. Sublethal UVA doses also induces oxidative damage, but, in addition, it triggers a variety of adaptive responses, including the overexpression of pelA and pslA genes in P. aeruginosa . These genes encode the synthesis of Pel and Psl, which are essential polysaccharides in biofilm formation. The present study analysed the role of Pel and Psl in the adaptive responses generated by exposure to low UVA doses, and their importance in the response to lethal doses of UVA, hydrogen peroxide (H2O2), and sodium hypochlorite, in both planktonic cells and submerged and air–liquid interface (ALI) biofilms. It also studied the roles of Pel and Psl in P. aeruginosa–Staphylococcus aureus interaction. The results demonstrate that the capacity of sublethal UVA exposure to increase cell hydrophobicity and cell attachment and generate cross-protection phenomena in P. aeruginosa depends on the presence of Pel and Psl. The study also shows that Pel and Psl have a key role in the tolerance to lethal doses of UVA radiation, sodium hypochlorite and H2O2, in both biofilms and planktonic cells. Finally, co-culture assays showed total inhibition of S. aureus growth in presence of P. aeruginosa . This phenomenon depends, at least in part, on the simultaneous presence of Pel and Psl in planktonic cells and biofilms, suggesting a relevant role of these polysaccharides in the interaction between these species.
-
-
- Microbial Virulence and Pathogenesis
-
-
-
The involvement of CiaR and the CiaR-regulated serine protease HtrA in thermal adaptation of Streptococcus pneumoniae
More LessThe in vivo temperature can vary according to the host tissue and the response to infection. Streptococcus pneumoniae has evolved mechanisms to survive these temperature differences, but neither the consequences of different temperatures for pneumococcal phenotype nor the genetic basis of thermal adaptation are known in detail. In our previous study [ 16 ], we found that CiaR, which is a part of two-component regulatory system CiaRH, as well as 17 genes known to be controlled by CiaRH, were identified to be differentially expressed with temperature. One of the CiaRH-regulated genes shown to be differentially regulated by temperature is for the high-temperature requirement protein (HtrA), coded by SPD_2068 (htrA). In this study, we hypothesized that the CiaRH system plays an important role in pneumococcal thermal adaptation through its control over htrA. This hypothesis was evaluated by testing strains mutated or overexpressing ciaR and/or htrA, in in vitro and in vivo assays. The results showed that in the absence of ciaR, the growth, haemolytic activity, amount of capsule and biofilm formation were considerably diminished at 40 °C only, while the cell size and virulence were affected at both 34 and 40 °C. The overexpression of htrA in the ∆ciaR background reconstituted the growth at all temperatures, and the haemolytic activity, biofilm formation and virulence of ∆ciaR partially at 40 °C. We also showed that overexpression of htrA in the wild-type promoted pneumococcal virulence at 40 °C, while the increase of capsule was observed at 34 °C, suggesting that the role of htrA changes at different temperatures. Our data suggest that CiaR and HtrA play an important role in pneumococcal thermal adaptation.
-
-
-
-
Variable disruption of epithelial monolayers by Neisseria meningitidis carriage isolates of the hypervirulent MenW cc11 and MenY cc23 lineages
Colonization of mucosal tissues by Neisseria meningitidis requires adhesion mediated by the type IV pilus and multiple outer-membrane proteins. Penetration of the mucosa and invasion of epithelial cells are thought to contribute to host persistence and invasive disease. Using Calu-3 cell monolayers grown at an air–liquid interface, we examined adhesion, invasion and monolayer disruption by carriage isolates of two clonal complexes of N. meningitidis . Carriage isolates of both the serogroup Y cc23 and the hypervirulent serogroup W cc11 lineages exhibited high levels of cellular adhesion, and a variable disruption phenotype across independent isolates. Inactivation of the gene encoding the main pilus sub-unit in multiple cc11 isolates abrogated both adhesive capacity and ability to disrupt epithelial monolayers. Contrastingly, inactivation of the phase-variable opa or nadA genes reduced adhesion and invasion, but not disruption of monolayer integrity. Adherence of tissue-disruptive meningococci correlated with loss of staining for the tight junction protein, occludin. Intriguingly, in a pilus-negative strain background, we observed compensatory ON switching of opa genes, which facilitated continued adhesion. We conclude that disruption of epithelial monolayers occurs in multiple meningococcal lineages but can vary during carriage and is intimately linked to pilus-mediated adhesion.
-
-
-
Clostridioides difficile infection: traversing host–pathogen interactions in the gut
More LessC. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile , describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
-
- Regulation, Sensing and Signalling (formerly Regulation)
-
-
-
Cross-species activation of hydrogen cyanide production by a promiscuous quorum-sensing receptor promotes Chromobacterium subtsugae competition in a dual-species model
Many saprophytic bacteria have LuxR-I-type acyl-homoserine lactone (AHL) quorum-sensing systems that may be important for competing with other bacteria in complex soil communities. LuxR AHL receptors specifically interact with cognate AHLs to cause changes in expression of target genes. Some LuxR-type AHL receptors have relaxed specificity and are responsive to non-cognate AHLs. These promiscuous receptors might be used to sense and respond to AHLs produced by other bacteria by eavesdropping. We are interested in understanding the role of eavesdropping during interspecies competition. The soil saprophyte Chromobacterium subtsugae has a single AHL circuit, CviR-I, which produces and responds to N-hexanoyl-HSL (C6-HSL). The AHL receptor CviR can respond to a variety of AHLs in addition to C6-HSL. In prior studies we have utilized a coculture model with C. subtsugae and another soil saprophyte, Burkholderia thailandensis. Using this model, we previously showed that promiscuous activation of CviR by B. thailandensis AHLs provides a competitive advantage to C. subtsugae. Here, we show that B. thailandensis AHLs activate transcription of dozens of genes in C. subtsugae, including the hcnABC genes coding for production of hydrogen cyanide. We show that hydrogen cyanide production is population density-dependent and demonstrate that the cross-induction of hydrogen cyanide by B. thailandensis AHLs provides a competitive advantage to C. subtsugae. Our results provide new information on C. subtsugae quorum sensing and are the basis for future studies aimed at understanding the role of eavesdropping in interspecies competition.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)