1887

Abstract

is a versatile bacterium capable of adapting to a wide range of stress factors, including solar UVA radiation (400–315 nm). High UVA doses produce lethal effects due to the action of reactive oxygen species. Sublethal UVA doses also induces oxidative damage, but, in addition, it triggers a variety of adaptive responses, including the overexpression of and genes in . These genes encode the synthesis of Pel and Psl, which are essential polysaccharides in biofilm formation. The present study analysed the role of Pel and Psl in the adaptive responses generated by exposure to low UVA doses, and their importance in the response to lethal doses of UVA, hydrogen peroxide (HO), and sodium hypochlorite, in both planktonic cells and submerged and air–liquid interface (ALI) biofilms. It also studied the roles of Pel and Psl in interaction. The results demonstrate that the capacity of sublethal UVA exposure to increase cell hydrophobicity and cell attachment and generate cross-protection phenomena in depends on the presence of Pel and Psl. The study also shows that Pel and Psl have a key role in the tolerance to lethal doses of UVA radiation, sodium hypochlorite and HO, in both biofilms and planktonic cells. Finally, co-culture assays showed total inhibition of growth in presence of . This phenomenon depends, at least in part, on the simultaneous presence of Pel and Psl in planktonic cells and biofilms, suggesting a relevant role of these polysaccharides in the interaction between these species.

Funding
This study was supported by the:
  • Agencia Nacional de Promoción Científica y Tecnológica (Award PICT 0598)
    • Principle Award Recipient: MagdalenaPezzoni
  • Comisión Nacional de Energía Atómica, Gobierno de Argentina
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001301
2023-02-09
2024-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/2/mic001301.html?itemId=/content/journal/micro/10.1099/mic.0.001301&mimeType=html&fmt=ahah

References

  1. Hardalo C, Edberg SC. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol 1997; 23:47–75 [View Article] [PubMed]
    [Google Scholar]
  2. Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539–574 [View Article] [PubMed]
    [Google Scholar]
  3. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8:623–633 [View Article]
    [Google Scholar]
  4. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002; 56:187–209 [View Article]
    [Google Scholar]
  5. Ophir T, Gutnick DL. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 1994; 60:740–745 [View Article] [PubMed]
    [Google Scholar]
  6. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358:135–138 [View Article]
    [Google Scholar]
  7. Harrison JJ, Turner RJ, Ceri H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 2005; 7:981–994 [View Article]
    [Google Scholar]
  8. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 2003; 5:1213–1219 [View Article] [PubMed]
    [Google Scholar]
  9. Pezzoni M, Pizarro RA, Costa CS. Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms. J Photochem Photobiol B 2014; 131:53–64 [View Article]
    [Google Scholar]
  10. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular Polysaccharides, Alginate, Pel, and Psl. Front Microbiol 2011; 2:167 [View Article]
    [Google Scholar]
  11. Ghafoor A, Hay ID, Rehm BHA. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 2011; 77:5238–5246 [View Article] [PubMed]
    [Google Scholar]
  12. Evans LR, Linker A. Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol 1973; 116:915–924 [View Article]
    [Google Scholar]
  13. Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36:893–916 [View Article]
    [Google Scholar]
  14. Pritt B, O’Brien L, Winn W. Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol 2007; 128:32–34 [View Article] [PubMed]
    [Google Scholar]
  15. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 2001; 183:5395–5401 [View Article]
    [Google Scholar]
  16. Alkawash MA, Soothill JS, Schiller NL. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 2006; 114:131–138 [View Article] [PubMed]
    [Google Scholar]
  17. Charlesworth C, Saran V, Volpiana L, Woods H. The role of biofilm structure in the mechanism of gentamicin and ciprofloxacin antibiotic resistance in Pseudomonas aeruginosa PAO1 biofilms. J Exp Microbiol Immunol 2008; 12:27–31
    [Google Scholar]
  18. Simpson JA, Smith SE, Dean RT. Scavenging by alginate of free radicals released by macrophages. Free Radic Biol Med 1989; 6:347–353 [View Article] [PubMed]
    [Google Scholar]
  19. Pezzoni M, Lemos M, Pizarro RA, Costa CS. UVA as environmental signal for alginate production in Pseudomonas aeruginosa: role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses. Photochem Photobiol Sci 2022; 21:1459–1472 [View Article] [PubMed]
    [Google Scholar]
  20. Wozniak DJ, Wyckoff TJO, Starkey M, Keyser R, Azadi P et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci 2003; 100:7907–7912 [View Article]
    [Google Scholar]
  21. Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci 2015; 112:11353–11358 [View Article]
    [Google Scholar]
  22. Le Mauff F, Razvi E, Reichhardt C, Sivarajah P, Parsek MR et al. The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun Biol 2022; 5:502 [View Article]
    [Google Scholar]
  23. Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 2004; 186:4457–4465 [View Article]
    [Google Scholar]
  24. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ et al. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 2011; 7:e1001264 [View Article] [PubMed]
    [Google Scholar]
  25. Chew SC, Kundukad B, Seviour T, van der Maarel JRC, Yang L et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. mBio 2014; 5:e01536–14 [View Article]
    [Google Scholar]
  26. Ma L, Conover M, Lu H, Parsek MR, Bayles K et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 2009; 5:e1000354 [View Article]
    [Google Scholar]
  27. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 2009; 73:622–638 [View Article] [PubMed]
    [Google Scholar]
  28. Murakami K, Ono T, Viducic D, Somiya Y, Kariyama R et al. Role of psl genes in antibiotic tolerance of adherent Pseudomonas aeruginosa. Antimicrob Agents Chemother 2017; 61:e02587-16 [View Article]
    [Google Scholar]
  29. Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 2009; 155:2148–2156 [View Article]
    [Google Scholar]
  30. Serra R, Grande R, Butrico L, Rossi A, Settimio UF et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13:605–613 [View Article] [PubMed]
    [Google Scholar]
  31. Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR et al. Co culture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol 2015; 197:2252–2264 [View Article]
    [Google Scholar]
  32. Maliniak ML, Stecenko AA, McCarty NA. A longitudinal analysis of chronic MRSA and Pseudomonas aeruginosa co-infection in cystic fibrosis: a single-center study. J Cyst Fibros 2016; 15:350–356 [View Article]
    [Google Scholar]
  33. Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ et al. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog Dis 2018; 76: [View Article]
    [Google Scholar]
  34. Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova Y et al. The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLoS Pathog 2013; 9:e1003526 [View Article]
    [Google Scholar]
  35. Webb RB. Lethal and mutagenic effects of near-ultraviolet radiation. Photochem Photobiol Rev 1977; 2:169–261
    [Google Scholar]
  36. Fernández RO, Pizarro RA. Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. Photochem Photobiol 1996; 64:334–339 [View Article]
    [Google Scholar]
  37. Fernández RO, Pizarro RA. Pseudomonas aeruginosa UV-A-induced lethal effect: influence of salts, nutritional stress and pyocyanine. J Photochem Photobiol B 1999; 50:59–65 [View Article]
    [Google Scholar]
  38. Chamberlain J, Moss SH. Lipid peroxidation and other membrane damage produced in Escherichia coli K1060 by near-UV radiation and deuterium oxide. Photochem Photobiol 1987; 45:625–630 [View Article] [PubMed]
    [Google Scholar]
  39. Bosshard F, Bucheli M, Meur Y, Egli T. The respiratory chain is the cell’s Achilles’ heel during UVA inactivation in Escherichia coli. Microbiology 2010; 156:2006–2015 [View Article]
    [Google Scholar]
  40. Hu ML, Tappel AL. Potentiation of oxidative damage to proteins by ultraviolet-A and protection by antioxidants. Photochem Photobiol 1992; 56:357–363 [View Article]
    [Google Scholar]
  41. Girard PM, Francesconi S, Pozzebon M, Graindorge D, Rochette P et al. UVA-induced damage to DNA and proteins: direct versus indirect photochemical processes. J Phys: Conf Ser 2011; 261:012002 [View Article]
    [Google Scholar]
  42. Bäumler W, Regensburger J, Knak A, Felgenträger A, Maisch T. UVA and endogenous photosensitizers--the detection of singlet oxygen by its luminescence. Photochem Photobiol Sci 2012; 11:107–117 [View Article] [PubMed]
    [Google Scholar]
  43. Pezzoni M, Meichtry M, Pizarro RA, Costa CS. Role of the Pseudomonas Quinolone Signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation. J Photochem Photobiol B 2015; 142:129–140 [View Article]
    [Google Scholar]
  44. Jagger J. Near-UV radiation effects on microorganisms. Photochem Photobiol 1981; 34:761–768 [PubMed]
    [Google Scholar]
  45. Favre A, Hajnsdorf E, Thiam K, Caldeira de Araujo A. Mutagenesis and growth delay induced in Escherichia coli by near-ultraviolet radiations. Biochimie 1985; 67:335–342 [View Article] [PubMed]
    [Google Scholar]
  46. Ramabhadran TV, Jagger J. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation. Proc Natl Acad Sci 1976; 73:59–63 [View Article]
    [Google Scholar]
  47. Pizarro RA. UV-A oxidative damage modified by environmental conditions in Escherichia coli. Int J Radiat Biol 1995; 68:293–299 [View Article] [PubMed]
    [Google Scholar]
  48. Pezzoni M, Tribelli PM, Pizarro RA, López NI, Costa CS. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa. Microbiology 2016; 162:855–864 [View Article]
    [Google Scholar]
  49. Pezzoni M, Pizarro RA, Costa CS. Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa. Biofouling 2018; 34:673–684 [View Article] [PubMed]
    [Google Scholar]
  50. Pezzoni M, Pizarro RA, Costa CS. Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. Microbiology 2020; 166:735–750 [View Article]
    [Google Scholar]
  51. Pezzoni M, De Troch M, Pizarro RA, Costa CS. Homeophasic adaptation in response to UVA radiation in Pseudomonas aeruginosa: changes of membrane fatty acid composition and induction of desA and desB expression. Photochem Photobiol 2022; 98:886–893 [View Article]
    [Google Scholar]
  52. Hoerter JD, Arnold AA, Kuczynska DA, Shibuya A, Ward CS et al. Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. J Photochem Photobiol B 2005; 81:171–180 [View Article]
    [Google Scholar]
  53. Cadenas E, Ginsberg M, Rabe U, Sies H. Evaluation of alpha-tocopherol antioxidant activity in microsomal lipid peroxidation as detected by low-level chemiluminescence. Biochem J 1984; 223:755–759 [View Article]
    [Google Scholar]
  54. Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 1980; 9:29–33 [View Article]
    [Google Scholar]
  55. Rosenberg M. Microbial adhesion to hydrocarbons: twenty-five years of doing MATH. FEMS Microbiol Lett 2006; 262:129–134 [View Article] [PubMed]
    [Google Scholar]
  56. Khakimova M, Ahlgren HG, Harrison JJ, English AM, Nguyen D. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J Bacteriol 2013; 195:2011–2020 [View Article] [PubMed]
    [Google Scholar]
  57. Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci 2005; 102:14422–14427 [View Article]
    [Google Scholar]
  58. Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol 2012; 78:5060–5069 [View Article] [PubMed]
    [Google Scholar]
  59. Tilbury RN, Quickenden TI. Spectral and time dependence studies of the ultraweak bioluminiscence emitted by the bacterium Escherichia coli. Photochem Photobiol 1988; 47:145–150 [View Article]
    [Google Scholar]
  60. Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 2007; 189:5383–5386 [View Article] [PubMed]
    [Google Scholar]
  61. Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 2007; 10:644–648 [View Article] [PubMed]
    [Google Scholar]
  62. Mikkelsen H, Sivaneson M, Filloux A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol 2011; 13:1666–1681 [View Article] [PubMed]
    [Google Scholar]
  63. Tian L, Xu S, Hutchins WC, Yang C-H, Li J. Impact of the exopolysaccharides Pel and Psl on the initial adhesion of Pseudomonas aeruginosa to sand. Biofouling 2014; 30:213–222 [View Article]
    [Google Scholar]
  64. Rosenberg M, Barki M, Bar‐Ness R, Goldberg S, Doyle RJ. Microbial adhesion to hydrocarbons (MATH). Biofouling 1991; 4:121–128 [View Article]
    [Google Scholar]
  65. van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ. The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 1987; 53:1893–1897 [View Article] [PubMed]
    [Google Scholar]
  66. Wang C, Jiang L, Wei D, Li Y, Sui X et al. Effect of secondary structure determined by FTIR spectra on surface hydrophobicity of soybean protein isolate. Procedia Engineering 2011; 15:4819–4827 [View Article]
    [Google Scholar]
  67. Sabra W, Lünsdorf H, Zeng AP. Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 2003; 149:2789–2795 [View Article]
    [Google Scholar]
  68. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 2012; 14:1913–1928 [View Article] [PubMed]
    [Google Scholar]
  69. Chua SL, Ding Y, Liu Y, Cai Z, Zhou J et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol 2016; 6:160162 [View Article]
    [Google Scholar]
  70. Strempel N, Nusser M, Neidig A, Brenner-Weiss G, Overhage J. The oxidative stress agent hypochlorite stimulates c-di-GMP synthesis and biofilm formation in Pseudomonas aeruginosa. Front Microbiol 2017; 8:2311 [View Article]
    [Google Scholar]
  71. Gao Q, Garcia-Pichel F. Microbial ultraviolet sunscreens. Nat Rev Microbiol 2011; 9:791–802 [View Article]
    [Google Scholar]
  72. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci 2013; 110:1059–1064 [View Article]
    [Google Scholar]
  73. Cardozo VF, Oliveira AG, Nishio EK, Perugini MRE, Andrade CGTJ et al. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 2013; 12:12 [View Article]
    [Google Scholar]
  74. Park JH, Lee JH, Cho MH, Herzberg M, Lee J. Acceleration of protease effect on Staphylococcus aureus biofilm dispersal. FEMS Microbiol Lett 2012; 335:31–38 [View Article] [PubMed]
    [Google Scholar]
  75. HOLLOWAY BW. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 1955; 13:572–581 [View Article] [PubMed]
    [Google Scholar]
  76. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 2010; 75:827–842 [View Article] [PubMed]
    [Google Scholar]
  77. Kirisits MJ, Prost L, Starkey M, Parsek MR. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2005; 71:4809–4821 [View Article] [PubMed]
    [Google Scholar]
  78. Pawar SV, Messina M, Rinaldo S, Cutruzzolà F, Kaever V et al. Novel genetic tools to tackle c-di-GMP-dependent signalling in Pseudomonas aeruginosa. J Appl Microbiol 2016; 120:205–217 [View Article] [PubMed]
    [Google Scholar]
  79. Scilletta NA, Pezzoni M, Desimone MF, Soler-Illia GJAA, Catalano PN et al. Transforming an inert nanopolymer into broad-spectrum bactericidal by superstructure tuning. Colloids Surf B Biointerfaces 2019; 178:214–221 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001301
Loading
/content/journal/micro/10.1099/mic.0.001301
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error