1887

Abstract

The extracytoplasmic function sigma factor, , has been shown to play a critical role in virulence of serovar Typhimurium ( Typhimurium). The previously optimized two-plasmid system has been used to identify Typhimurium promoters recognized by RNA polymerase containing . This method allowed identification of 34 -dependent promoters that direct expression of 62 genes in Typhimurium, 23 of which (including several specific for Typhimurium) have not been identified previously to be dependent upon in . The promoters were confirmed in Typhimurium and transcriptional start points of the promoters were determined by S1-nuclease mapping. All the promoters contained sequences highly similar to the consensus sequence of -dependent promoters. The identified genes belonging to the Typhimurium -regulon encode proteins involved in primary metabolism, DNA repair systems and outer-membrane biogenesis, and regulatory proteins, periplasmic proteases and folding factors, proposed lipoproteins, and inner- and outer-membrane proteins with unknown functions. Several of these -dependent genes have been shown to play a role in virulence of Typhimurium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28744-0
2006-05-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1347.html?itemId=/content/journal/micro/10.1099/mic.0.28744-0&mimeType=html&fmt=ahah

References

  1. Alba B. M., Gross C. A. 2004; Regulation of the Escherichia coli σ E-dependent envelope stress response. Mol Microbiol 52:613–619 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. O., Seidman J. S., Smith J. A., Struhl K. 1995 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  3. Baneyx F., Georgiou G. 1991; Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo . J Bacteriol 173:2696–2703
    [Google Scholar]
  4. Bang I.-S., Frye J. G., McClelland M., Velayudhan J., Fang F. C. 2005; Alternative sigma factor interactions in Salmonella : σ E and σ H promote antioxidant defences by enhancing σ S levels. Mol Microbiol 56:811–823 [CrossRef]
    [Google Scholar]
  5. Bernstein J. A., Lin P.-H., Cohen S. N., Lin-Chao S. 2004; Global analysis of Escherichia coli RNA degradosome function using DNA array. Proc Natl Acad Sci U S A 101:2758–2763 [CrossRef]
    [Google Scholar]
  6. Betton J.-M., Sassoon N., Hofnung M., Laurent M. 1998; Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli . J Biol Chem 273:8897–8902 [CrossRef]
    [Google Scholar]
  7. Bohin J.-P. 2000; Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186:11–19 [CrossRef]
    [Google Scholar]
  8. Bradshaw J. S., Kuzminov A. 2003; RdgB acts to avoid chromosome fragmentation in Escherichia coli . Mol Microbiol 48:1711–1725 [CrossRef]
    [Google Scholar]
  9. Buchmeier N. A., Lipps C. J., So M. Y., Heffron F. 1993; Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages. Mol Microbiol 7:933–936 [CrossRef]
    [Google Scholar]
  10. Carpousis A. J. 2002; The Escherichia coli RNA degradosome: structure, function and relationship to other ribonucleolytic multienzyme complexes. Biochem Soc Trans 30:150–155
    [Google Scholar]
  11. Cascales E., Lloubes R. 2004; Deletion analysis of the peptidoglycan-associated lipoprotein Pal reveals three independent binding sequences including a TolA box. Mol Microbiol 51:873–885
    [Google Scholar]
  12. Claverie-Martin F., Diaz-Torres M. R., Kuschner S. R. 1987; Analysis of the regulatory region of the proteases III ( ptr ) gene of Escherichia coli K-12. Gene 54:185–195 [CrossRef]
    [Google Scholar]
  13. Cornista J., Ikeuchi S., Haruki M., Kohara A., Takano K., Morikawa M., Kanaya S. 2004; Cleavage of various peptides with pitrilysin from Escherichia coli : kinetic analyses using β -endorphin and its derivatives. Biosci Biotechnol Biochem 68:2128–2137 [CrossRef]
    [Google Scholar]
  14. Crouch M.-L., Becker L. A., Bang I.-S., Tanabe H., Ouellette A. J., Fang F. C. 2005; The alternative sigma factor σ E is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Mol Microbiol 56:789–799 [CrossRef]
    [Google Scholar]
  15. Dartigalongue C., Missiakas D., Raina S. 2001; Characterization of the Escherichia coli σ E regulon. J Biol Chem 276:20866–20875 [CrossRef]
    [Google Scholar]
  16. Detmers F. J. M., Lanfermeijer F. C., Poolman B. 2001; Peptides and ATP binding cassette peptide transporters. Res Microbiol 152:245–258 [CrossRef]
    [Google Scholar]
  17. Dykstra C. C., Kushner S. R. 1985; Physical characterization of the cloned protease III gene from Escherichia coli . J Bacteriol 163:1055–1059
    [Google Scholar]
  18. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C. D. 2003; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica . Mol Microbiol 47:103–118
    [Google Scholar]
  19. Higgins C. F. 1992; ABC transporters from microorganisms to man. Annu Rev Cell Biol 8:67–113 [CrossRef]
    [Google Scholar]
  20. Hiles I. D., Gallagher M. P., Jamieson D. J., Higgins C. F. 1987; Molecular characterization of the oligopeptide permease of Salmonella typhimurium . J Mol Biol 195:125–142 [CrossRef]
    [Google Scholar]
  21. Hoiseth S. K., Stocker B. A. D. 1981; Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239 [CrossRef]
    [Google Scholar]
  22. Humphreys S., Stevenson A., Bacon A., Weihardt A. B., Roberts M. 1999; The alternative sigma factor, σ E, is critically important for the virulence of Salmonella typhimurium . Infect Immun 67:1560–1568
    [Google Scholar]
  23. Humphreys S., Rowley G., Stevenson A., Kenyon W. J., Spector M. P., Roberts M. 2003; Role of periplasmic peptidylprolyl isomerase in Salmonella enterica serovar Typhimurium virulence. Infect Immun 71:5386–5388 [CrossRef]
    [Google Scholar]
  24. Igarashi K., Saisho T., Yuguchi M., Kashiwagi K. 1997; Molecular mechanism of polyamine stimulation of the synthesis of oligopeptide-binding protein. J Biol Chem 272:4058–4064 [CrossRef]
    [Google Scholar]
  25. Johnson K., Charles I., Dougan G., Pickard D., Ogaora P., Costa G., Ali T., Miller I., Hormaeche C. 1991; The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 5:401–407 [CrossRef]
    [Google Scholar]
  26. Kabir M. S., Yamashita D., Koyama S. 8 other authors 2005; Cell lysis directed by σ E in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli . Microbiology 151:2721–2735 [CrossRef]
    [Google Scholar]
  27. Kenyon W. J., Sayers D. G., Humphreys S., Roberts M., Spector M. P. 2002; The starvation-stress response of Salmonella enterica serovar Typhimurium requires σ E-, but not CpxR-regulated extracytoplasmic functions. Microbiology 148:113–122
    [Google Scholar]
  28. Kenyon W. J., Thomas S. M., Johnson E., Pallen M. J., Spector M. P. 2005; Shifts from glucose to certain secondary carbon-sources result in activation of the extracytoplasmic function sigma factor σ E in Salmonella enterica serovar Typhimurium. Microbiology 151:2373–2383 [CrossRef]
    [Google Scholar]
  29. Kormanec J. 2001; Analyzing the developmental expression of sigma factors with S1-nuclease mapping. Methods Mol Biol 160:481–494
    [Google Scholar]
  30. Lazzaroni J. C., Germon P., Ray M.-C., Vianney A. 1999; The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett 177:191–197 [CrossRef]
    [Google Scholar]
  31. Lequette Y., Odberg-Ferragut C., Bohin J.-P., Lacroix J.-M. 2004; Identification of mdoD , an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. J Bacteriol 186:3695–3702 [CrossRef]
    [Google Scholar]
  32. Maxam A. M., Gilbert W. 1980; Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65:499–560
    [Google Scholar]
  33. Miticka H., Rowley G., Rezuchova B., Homerova D., Humphreys S., Farn J., Roberts M., Kormanec J. 2003; Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor σ E in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 226:307–314 [CrossRef]
    [Google Scholar]
  34. Miticka H., Rezuchova B., Homerova D., Roberts M., Kormanec J. 2004; Identification of nucleotides critical for activity of the σ E-dependent rpoEp3 promoter in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 238:227–233
    [Google Scholar]
  35. Onufryk C., Crouch M.-L., Fang F. C., Gross C. A. 2005; Characterization of six lipoproteins in the σ E regulon. J Bacteriol 187:4552–4561 [CrossRef]
    [Google Scholar]
  36. Park S. F., Stirling D. A., Hulton C. S. J., Booth I. R., Higgins C. F., Stewart G. S. A. B. 1989; A novel, non-invasive promoter probe vector: cloning of the osmoregulated proU promoter of Escherichia coli K12. Mol Microbiol 3:1011–1023 [CrossRef]
    [Google Scholar]
  37. Rajagopal S., Eis N., Bhattacharya M., Nickerson K. W. 2003; Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulphate resistance in Escherichia coli . FEMS Microbiol Lett 223:25–31 [CrossRef]
    [Google Scholar]
  38. Rezuchova B., Kormanec J. 2001; A two-plasmid system for identification of promoters recognized by RNA polymerase containing extracytoplasmic stress response σ E in Escherichia coli . J Microbiol Methods 45:103–111 [CrossRef]
    [Google Scholar]
  39. Rezuchova B., Miticka H., Homerova D., Roberts M., Kormanec J. 2003; New members of the Escherichia coli σ E regulon identified by a two-plasmid system. FEMS Microbiol Lett 225:1–7 [CrossRef]
    [Google Scholar]
  40. Richarme G., Caldas T. D. 1997; Chaperone properties of the bacterial periplasmic substrate-binding proteins. J Biol Chem 272:15607–15612 [CrossRef]
    [Google Scholar]
  41. Rollenhagen C., Sorensen M., Rizos K., Hurvitz R., Bumann D. 2004; Antigen selection based on expression levels during infection facilitates vaccine development for an intracellular pathogen. Proc Natl Acad Sci U S A 101:8739–8744 [CrossRef]
    [Google Scholar]
  42. Ruiz N., Silhavy T. J. 2005; Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8:122–126 [CrossRef]
    [Google Scholar]
  43. Sanger F., Nicklen S., Coulsen A. R. 1977; DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  44. Strauch K. L., Johnson K., Beckwith J. 1989; Characterization of degP , a gene required for proteolysis in the cell-envelope and essential for growth of Escherichia coli at high temperatures. J Bacteriol 171:2689–2696
    [Google Scholar]
  45. Swamy K. H. S., Goldberg A. L. 1982; Subcellular distribution of various proteases in Escherichia coli . J Bacteriol 149:1027–1033
    [Google Scholar]
  46. Sydenham M., Douce G., Bowe F., Ahmed S., Chatfield S., Dougan G. 2000; Salmonella enterica serovar Typhimurium surA mutants are attenuated and effective live oral vaccines. Infect Immun 68:1109–1115 [CrossRef]
    [Google Scholar]
  47. Tamayo R., Ryan S. S., McCoy A. J., Gunn J. S. 2002; Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica Serovar Typhimurium. Infect Immun 70:6770–6778 [CrossRef]
    [Google Scholar]
  48. Taylor W. E., Straus D. B., Grossman A. D., Burton Z. F., Gross C. A., Burgess R. R. 1984; Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase. Cell 38:371–381 [CrossRef]
    [Google Scholar]
  49. Testerman T. L., Vazquez-Torres A., Xu Y., Jones-Carson J., Libby S. J., Fang F. C. 2002; The alternative sigma factor σ E controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 43:771–782 [CrossRef]
    [Google Scholar]
  50. Tomoyasu T., Takaya A., Sasaki T., Nagase T., Kikuno R., Morioka M., Yamamoto T. 2003; A new heat shock gene, agsA , which encodes a small chaperone involved in suppressing protein aggregation in Salmonella enterica serovar Typhimurium. J Bacteriol 185:6331–6339 [CrossRef]
    [Google Scholar]
  51. Vianney A., Muller M., Clavel T., Lazzaroni J. C., Portalier R., Webster R. E. 1996; Characterization of the tol-pal region of Escherichia coli K-12: translational control of tolR expression by TolQ and identification of a new open reading frame downstream of pal encoding a periplasmic protein. J Bacteriol 178:4031–4038
    [Google Scholar]
  52. Vines E. D., Marolda C. L., Balachndran A., Valvano M. A. 2005; Defective O-antigen polymerization in tolA and pal mutants of Escherichia coli in response to extracytoplasmic stress. J Bacteriol 187:3359–3368 [CrossRef]
    [Google Scholar]
  53. Wu T., Malinverni J., Ruiz N., Kim S., Silhavy T. J., Kahne D. 2005; Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli . Cell 121:235–245 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28744-0
Loading
/content/journal/micro/10.1099/mic.0.28744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error