1887

Abstract

serovar Typhimurium (. Typhimurium) elicits the starvation-stress response (SSR) due to starvation for an essential nutrient, e.g. a carbon/energy source (C-source). As part of the SSR, the alternative sigma factor is activated and induced. The authors suspect that this activation is, in part, triggered by changes in the . Typhimurium cell envelope occurring during the adaptation from growth to carbon/energy starvation (C-starvation), and resulting in an increased need for -regulated factors involved in the proper folding and assembly of newly synthesized proteins destined for this extracytoplasmic compartment. This led to the hypothesis that a activation signal might arise during C-source shifts that cause the induction of proteins localized to the extracytoplasmic compartment, i.e. the outer membrane or periplasm, of the cell. To test this hypothesis, cultures were grown in minimal medium containing enough glucose to reach mid-exponential-phase, plus a non-limiting amount of a secondary ‘less-preferred’ but utilizable carbon/energy source. The activity was then monitored using plasmids carrying P1– and P2– transcriptional fusions, which exhibit -independent and -dependent expression, respectively. The secondary C-sources maltose, succinate and citrate, which have extracytoplasmic components involved in their utilization (e.g. LamB), resulted in a discernible diauxic lag period and a sustained increase in activity. Growth transition from glucose to other utilizable phosphotransferase (PTS) and non-PTS C-sources, such as trehalose, mannose, mannitol, fructose, glycerol, -galactose or -arabinose, did not cause a discernible diauxic lag period or a sustained increase in activity. Interestingly, a shift from glucose to melibiose, which does not use an extracytoplasmic-localized protein for uptake, did cause an observable diauxic lag period but did not result in a sustained increase in activity. In addition, overexpression of LamB from an arabinose-inducible promoter leads to a significant increase in activity in the absence of a glucose to maltose shift or C-starvation. Furthermore, a Δ : : Ω-Km mutant, lacking the LamB maltoporin, exhibited an approximately twofold reduction in the sustained activity observed during a glucose to maltose shift, again supporting the hypothesis. Interestingly, the LamB protein lacks the typical Y-X-F terminal tripeptide of the OmpC-like peptides that activate DegS protease activity leading to activation. It does, however, possess a terminal pentapeptide (Q-M-E-I-W-W) that may function as a ligand for a putative class II PDZ-binding site. The authors therefore propose that the regulon of . Typhimurium not only is induced in response to deleterious environmental conditions, but also plays a role in the adaptation of cells to new growth conditions that necessitate changes in the extracytoplasmic compartment of the cell, which may involve alternative signal recognition and activation pathways that are independent of DegS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27649-0
2005-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/7/mic1512373.html?itemId=/content/journal/micro/10.1099/mic.0.27649-0&mimeType=html&fmt=ahah

References

  1. Ades, S. E., Connelly, L. E., Alba, B. M. & Gross, C. A. ( 1999; ). The Escherichia coli σ E-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-σ factor. Genes Dev 13, 2449–2461.[CrossRef]
    [Google Scholar]
  2. Ades, S. E., Grigorova, I. L. & Gross, C. A. ( 2003; ). Regulation of the alternative sigma factor σ E during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli. J Bacteriol 185, 2512–2519.[CrossRef]
    [Google Scholar]
  3. Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z. & Gross, C. A. ( 2002; ). DegS and YaeL participate sequentially in the cleavage of RseA to activate the σ E-dependent extracytoplasmic stress response. Genes Dev 16, 2156–2168.[CrossRef]
    [Google Scholar]
  4. Benner-Luger, D. & Boos, W. ( 1988; ). The mglB sequence of Salmonella typhimurium LT-2; promoter analysis by gene fusions and evidence for a divergently oriented gene coding for the mgl repressor. Mol Gen Genet 214, 579–587.[CrossRef]
    [Google Scholar]
  5. Betton, J. M., Sassoon, N., Hofnung, M. & Laurent, M. ( 1998; ). Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli. J Biol Chem 273, 8897–8902.[CrossRef]
    [Google Scholar]
  6. Braun, V. & Braun, M. ( 2002; ). Iron transport and signaling in Escherichia coli. FEBS Lett 529, 78–85.[CrossRef]
    [Google Scholar]
  7. Chan, R. K., Botstein, D., Watanabe, T. & Ogata, Y. ( 1972; ). Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high-frequency-transducing lysate. Virology 50, 883–898.[CrossRef]
    [Google Scholar]
  8. Danese, P. N. & Silhavy, T. J. ( 1997; ). The σ E and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. Genes Dev 11, 1183–1193.[CrossRef]
    [Google Scholar]
  9. Dartigalongue, C., Missiakas, D. & Raina, S. ( 2001; ). Characterization of the Escherichia coli σ E regulon. J Biol Chem 276, 20866–20875.[CrossRef]
    [Google Scholar]
  10. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  11. Davies, S. J., Golby, P., Omrani, D., Broad, S. A., Harrington, V. L., Guest, J. R., Kelly, D. J. & Andrews, S. C. ( 1999; ). Inactivation and regulation of the aerobic C4-dicarboxylate transport (dctA) gene of Escherichia coli. J Bacteriol 181, 5624–5635.
    [Google Scholar]
  12. De Las Penas, A., Connelly, L. & Gross, C. A. ( 1997; ). The σ E-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σ E. Mol Microbiol 24, 373–385.[CrossRef]
    [Google Scholar]
  13. Erickson, J. W. & Gross, C. A. ( 1989; ). Identification of the σ E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3, 1462–1471.[CrossRef]
    [Google Scholar]
  14. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J. & Guiney, D. G. ( 1992; ). The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA 89, 11978–11982.[CrossRef]
    [Google Scholar]
  15. Fischer, D., Teich, A., Neubauer, P. & Hengge-Aronis, R. ( 1998; ). The general stress sigma factor σ S of Escherichia coli is induced during diauxic shift from glucose to lactose. J Bacteriol 180, 3203–3206.
    [Google Scholar]
  16. Guzman, L.-M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  17. Hall, J. A., Gehring, K. & Nikaido, H. ( 1997; ). Two modes of ligand binding in maltose-binding protein of Escherichia coli. Correlation with the structure of ligands and the structure of binding protein. J Biol Chem 272, 17605–17609.[CrossRef]
    [Google Scholar]
  18. Horazdovsky, B. F. & Hogg, R. W. ( 1989; ). Genetic reconstitution of the high-affinity l-arabinose transport system. J Bacteriol 171, 3053–3059.
    [Google Scholar]
  19. Hoseith, S. K. & Stocker, B. A. D. ( 1981; ). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239.[CrossRef]
    [Google Scholar]
  20. Humphreys, S., Stevenson, A., Bacon, A., Weinhardt, A. B. & Roberts, M. ( 1999; ). The alternative sigma factor, σ E, is critically important for the virulence of Salmonella Typhimurium. Infect Immun 67, 1560–1568.
    [Google Scholar]
  21. Humphreys, S., Rowley, G., Stevenson, A., Kenyon, W. J., Spector, M. P. & Roberts, M. ( 2003; ). The role of periplasmic peptidyl-prolyl-isomerases in Salmonella virulence. Infect Immun 71, 5386–5388.[CrossRef]
    [Google Scholar]
  22. Janausch, I. G., Zientz, E., Tran, Q. H., Kröger, A. & Unden, G. ( 2002; ). C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553, 39–56.[CrossRef]
    [Google Scholar]
  23. Jones, C. H., Danese, P. N., Pinkner, J. S., Silhavy, T. J. & Hultgren, S. J. ( 1997; ). The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J 16, 6394–6406.[CrossRef]
    [Google Scholar]
  24. Kehres, D. G. & Hogg, R. W. ( 1992; ). Escherichia coli K-12 arabinose-binding protein mutants with altered transport properties. Protein Sci 1, 1652–1660.[CrossRef]
    [Google Scholar]
  25. Kenyon, W. J., Sayers, D. G., Humphreys, S., Roberts, M. & Spector, M. P. ( 2002; ). The starvation-stress response of Salmonella enterica serovar Typhimurium requires σ E, but not CpxR-regulated extracytoplasmic functions. Microbiology 148, 113–122.
    [Google Scholar]
  26. Lawhon, S. D., Frye, J. G., Suyemoto, M., Porwollik, S., McClelland, M. & Altier, C. ( 2003; ). Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol 48, 1633–1645.[CrossRef]
    [Google Scholar]
  27. Lo, T. C. ( 1977; ). The molecular mechanism of dicarboxylic acid transport in Escherichia coli K-12. J Supramol Struct 7, 463–480.[CrossRef]
    [Google Scholar]
  28. Lo, T. C. & Bewick, M. A. ( 1981; ). Use of a nonpenetrating substrate analogue to study the molecular mechanism of the outer membrane dicarboxylate transport system in Escherichia coli K-12. J Biol Chem 256, 5511–5517.
    [Google Scholar]
  29. Maloy, S. R. ( 1990; ). Experimental Techniques in Bacterial Genetics. Boston, MA: Jones & Bartlett.
  30. McClelland, M., Sanderson, K. E., Spieth, J. & 23 other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  31. Mecsas, J., Rouviere, P. E., Erickson, J. W., Donohue, T. J. & Gross, C. A. ( 1993; ). The activity of σ E, an Escherichia coli heat-inducible σ-factor, is modulated by expression of outer membrane proteins. Genes Dev 7, 2618–2628.[CrossRef]
    [Google Scholar]
  32. Mecsas, J., Welch, R., Erickson, J. W. & Gross, C. A. ( 1995; ). Identification and characterization of an outer membrane protein, OmpX, in Escherichia coli that is homologous to a family of outer membrane proteins including Ail of Yersinia enterocolitica. J Bacteriol 177, 799–804.
    [Google Scholar]
  33. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Missiakas, D., Betton, J. M. & Raina, S. ( 1996; ). New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21, 871–884.[CrossRef]
    [Google Scholar]
  35. Missiakas, D., Mayer, M. P., Lemaire, M., Georgopoulos, C. & Raina, S. ( 1997; ). Modulation of the Escherichia coli σ E (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24, 355–371.[CrossRef]
    [Google Scholar]
  36. Miticka, H., Rowley, G., Rezuchova, B., Homerova, D., Humphreys, S., Farn, J., Roberts, M. & Kormanec, J. ( 2003; ). Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor sigma E in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 226, 307–314.[CrossRef]
    [Google Scholar]
  37. Moat, A. G., Foster, J. W. & Spector, M. P. ( 2002; ). Microbial Physiology, 4th edn. New York: Wiley-Liss.
  38. Muller, N., Heine, H. G. & Boos, W. ( 1985; ). Characterization of the Salmonella typhimurium mgl operon and its gene products. J Bacteriol 163, 37–45.
    [Google Scholar]
  39. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. ( 1974; ). Culture medium for enterobacteria. J Bacteriol 119, 736–747.
    [Google Scholar]
  40. Notley, L. & Ferenci, T. ( 1995; ). Differential expression of mal genes under cAMP and endogenous inducer control in nutrient-stressed Escherichia coli. Mol Microbiol 16, 121–129.[CrossRef]
    [Google Scholar]
  41. O'Neal, C. R., Gabriel, W. M., Turk, A. K., Libby, S. J., Fang, F. C. & Spector, M. P. ( 1994; ). RpoS is necessary for both positive and negative regulation of starvation-survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol 176, 4610–4616.
    [Google Scholar]
  42. Ponting, C. P. ( 1997; ). Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 6, 464–468.
    [Google Scholar]
  43. Postma, P. W. ( 1977; ). Galactose transport in Salmonella typhimurium. J Bacteriol 129, 630–639.
    [Google Scholar]
  44. Postma, P. W., Lengeler, J. W. & Jacobson, G. R. ( 1993; ). Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57, 543–594.
    [Google Scholar]
  45. Rabus, R., Jack, D. L., Kelly, D. J. & Saier, M. H., Jr ( 1999; ). TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiology 145, 3431–3445.
    [Google Scholar]
  46. Schulein, K. & Benz, R. ( 1990; ). LamB (maltoporin) of Salmonella typhimurium: isolation, purification and comparison of sugar binding with LamB of Escherichia coli. Mol Microbiol 4, 625–632.[CrossRef]
    [Google Scholar]
  47. Seymour, R. L., Mishra, P. V., Khan, M. A. & Spector, M. P. ( 1996; ). Essential roles of core starvation-stress response loci in carbon-starvation-inducible cross-resistance and hydrogen peroxide-inducible adaptive resistance to oxidative challenge in Salmonella typhimurium. Mol Microbiol 20, 497–505.[CrossRef]
    [Google Scholar]
  48. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multi-copy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.[CrossRef]
    [Google Scholar]
  49. Songyang, Z., Fanningm, A. S., Fu, C. & 7 other authors ( 1997; ). Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77.[CrossRef]
    [Google Scholar]
  50. Spector, M. P. ( 1998; ). The starvation-stress response (SSR) of Salmonella. Adv Microb Physiol 40, 235–279.
    [Google Scholar]
  51. Spector, M. P. & Cubitt, C. L. ( 1992; ). Starvation-inducible loci of Salmonella typhimurium, regulation and roles in starvation survival. Mol Microbiol 6, 1467–1476.[CrossRef]
    [Google Scholar]
  52. Spector, M. P., Park, Y. K., Tirgari, S., Gonzalez, T. & Foster, J. W. ( 1988; ). Identification and characterization of starvation-regulated genetic loci in Salmonella typhimurium by using Mu d-directed lacZ operon fusion. J Bacteriol 170, 345–351.
    [Google Scholar]
  53. Spector, M. P., DiRusso, C. C., Pallen, M. J., Garcia del Portillo, F., Dougan, G. & Finlay, B. B. ( 1999a; ). The medium-/long-chain fatty acyl-CoA dehydrogenase (fadF) gene of Salmonella typhimurium is a phase 1 starvation-stress response (SSR) locus. Microbiology 145, 15–31.[CrossRef]
    [Google Scholar]
  54. Spector, M. P., Garcia del Portillo, F., Bearson, S. M., Mahmud, A., Magut, M., Finlay, B. B., Dougan, G., Foster, J. W. & Pallen, M. J. ( 1999b; ). The rpoS-dependent starvation-stress response locus stiA encodes a nitrate reductase (narZYWV) required for carbon-starvation-inducible thermotolerance and acid tolerance in Salmonella typhimurium. Microbiology 145, 3035–3045.
    [Google Scholar]
  55. Tanaka, K., Takayanagi, Y., Fujita, N., Ishihama, A. & Takahashi, H. ( 1993; ). Heterogeneity of the principal σ factor in Escherichia coli: the rpoS gene product, σ 38, is a second principal factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci U S A 90, 3511–3515.[CrossRef]
    [Google Scholar]
  56. Testerman, T. L., Vasquez-Torres, A., Xu, Y., Jones-Carson, J., Libby, S. J. & Fang, F. C. ( 2002; ). The alternative sigma factor σ E controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 43, 771–782.[CrossRef]
    [Google Scholar]
  57. Walsh, N. P., Alba, B. M., Bose, B., Gross, C. A. & Sauer, R. T. ( 2003; ). OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113, 61–71.[CrossRef]
    [Google Scholar]
  58. Winnen, B., Hvorup, R. N. & Saier, M. H., Jr ( 2003; ). The tripartite tricarboxylate transporter (TTT) family. Res Microbiol 154, 457–465.[CrossRef]
    [Google Scholar]
  59. Widenhorn, K. A., Somers, J. M. & Kay, W. W. ( 1988; ). Expression of the divergent tricarboxylate transport operon (tctI) of Salmonella typhimurium. J Bacteriol 170, 3223–3227.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27649-0
Loading
/content/journal/micro/10.1099/mic.0.27649-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error