-
Volume 151,
Issue 7,
2005
Volume 151, Issue 7, 2005
- Review
-
-
-
Phage therapy: the Escherichia coli experience
More LessPhages have been proposed as natural antimicrobial agents to fight bacterial infections in humans, in animals or in crops of agricultural importance. Phages have also been discussed as hygiene measures in food production facilities and hospitals. These proposals have a long history, but are currently going through a kind of renaissance as documented by a spate of recent reviews. This review discusses the potential of phage therapy with a specific example, namely Escherichia coli.
-
-
- Mini-Review
-
-
-
Databases and software for the comparison of prokaryotic genomes
More LessThe explosion in the number of complete genomes over the past decade has spawned a new and exciting discipline, that of comparative genomics. To exploit the full potential of this approach requires the development of novel algorithms, databases and software which are sophisticated enough to draw meaningful comparisons between complete genome sequences and are widely accessible to the scientific community at large. This article reviews progress towards the development of computational tools and databases for organizing and extracting biological meaning from the comparison of large collections of genomes.
-
-
- Microbiology Comment
-
- Cell And Developmental Biology
-
-
-
A putative dual-specific protein phosphatase encoded by YVH1 controls growth, filamentation and virulence in Candida albicans
In response to stimulants, such as serum, the yeast cells of the opportunistic fungal pathogen Candida albicans form germ tubes, which develop into hyphae. Yvh1p, one of the 29 protein phosphatases encoded in the C. albicans genome, has 45 % identity with the dual-specific phosphatase Yvh1p of the model yeast Saccharomyces cerevisiae. In this study, Yvh1p expression was not observed during the initial step of germ tube formation, although Yvh1p was expressed constitutively in cell cycle progression of yeast or hyphal cells. In an attempt to analyse the function of Yvh1p phosphatase, the complete ORFs of both alleles were deleted by replacement with hph200–URA3–hph200 and ARG4. Although YVH1 has nine single-nucleotide polymorphisms in its coding sequence, both YVH1 alleles were able to complement the YVH1 gene disruptant. The vegetative growth of Δyvh1 was significantly slower than the wild-type. The hyphal growth of Δyvh1 on agar, or in a liquid medium, was also slower than the wild-type because of the delay in nuclear division and septum formation, although germ tube formation was similar between the wild-type and the disruptant. Despite the slow hyphal growth, the expression of several hypha-specific genes in Δyvh1 was not delayed or repressed compared with that of the wild-type. Infection studies using mouse models revealed that the virulence of Δyvh1 was less than that of the wild-type. Thus, YVH1 contributes to normal vegetative yeast or hyphal cell cycle progression and pathogenicity, but not to germ tube formation.
-
-
- Biochemistry And Molecular Biology
-
-
-
Recovery from long-term stationary phase and stress survival in Escherichia coli require the l-isoaspartyl protein carboxyl methyltransferase at alkaline pH
More LessThe l-isoaspartyl protein carboxyl methyltransferase (pcm) can stimulate repair of isoaspartyl residues arising spontaneously in proteins to normal l-aspartyl residues. PCM is needed in Escherichia coli for maximal long-term survival when exposed to oxidative stress, osmotic stress, repeated heat stress or methanol. The effect of pH on a pcm mutant during long-term stationary phase was examined. PCM was not required for long-term survival of E. coli subjected to pH stress alone; however, PCM-deficient cells showed impaired resistance to paraquat and methanol only at elevated pH. The mutant also showed stress-survival phenotypes in minimal medium buffered to pH 9·0. Accumulation of isoaspartyl residues was accelerated at pH 8·0 or 9·0 in vivo, though PCM-deficient cells did not show higher levels of damage. However, the pcm mutant displayed an extended lag phase in recovering from stationary phase at pH 9·0. Protein repair by PCM thus plays a key role in long-term stress survival only at alkaline pH in E. coli, and it may function primarily to repair damage in cells that are recovering from nutrient limitation and in those cells that are able to divide during long-term stationary phase.
-
-
-
-
Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus
More LessA putative prenyltransferase gene, ftmPT1, was identified in the genome sequence of Aspergillus fumigatus. ftmPT1 was cloned and expressed in Escherichia coli, and the protein FtmPT1 was purified to near homogeneity and characterized biochemically. This enzyme was found to catalyse the prenylation of cyclo-l-trp-l-Pro (brevianamide F) at the C-2 position of the indole nucleus. FtmPT1 is a soluble monomeric protein, which does not contain the usual prenyl diphosphate binding site (N/D)DXXD found in most prenyltransferases, and which does not require divalent metal ions for its enzymic activity. K m values for brevianamide F and dimethylallyl diphosphate were determined as 55 and 74 μM, respectively. The turnover number was 5·57 s−1. FtmPT1 showed a high substrate specificity towards dimethylallyl diphosphate, but accepted different tryptophan-containing cyclic dipeptides. Together with dimethylallyltryptophan synthase of ergot alkaloid biosynthesis, FtmPT1 belongs to a new group of prenyltransferases with aromatic substrates.
-
-
-
Substitutions in the interdomain loop of the Tn10 TetA efflux transporter alter tetracycline resistance and substrate specificity
More LessCysteine replacement of Asp190, Glu192 and Ser201 residues in the cytoplasmic interdomain loop of the TetA(B) tetracycline efflux antiporter from Tn10 reduces tetracycline resistance [ Tamura, N., Konishi, S., Iwaki, S., Kimura-Someya, T., Nada, S. & Yamaguchi, A. (2001). J Biol Chem 276, 20330–20339 ]. It was found that these Cys substitutions altered the substrate specificity of TetA(B), increasing the relative resistance to doxycycline and minocycline over that to tetracycline by three- to sixfold. Substitutions of Asp190 and Glu192 by Ala, Asn and Gln also impaired the ability of TetA(B) to mediate tetracycline resistance while Ser201Ala and Ser201Thr substitutions did not. A Leu9Phe substitution in the first transmembrane helix of TetA(B) suppressed the Ser201Cys mutation, undoing the alterations in resistance and specificity. That the interdomain loop might contact substrate during transport, as is suggested from its role in substrate specificity, is unexpected considering that the primary sequence in the loop is not conserved among a group of otherwise homologous TetA proteins. However, in the interdomain loop of 11 of 14 homologous TetA efflux proteins, computational analysis revealed a short α-helix, which includes some residues affecting activity and substrate specificity. Perhaps this conserved secondary structure accounts for the role of the non-conserved interdomain loop in TetA function.
-
-
-
Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus
More Lessβ-Glucuronidase activity (encoded by the gus gene) has been characterized for the first time from Ruminococcus gnavus E1, an anaerobic bacterium belonging to the dominant human gut microbiota. β-Glucuronidase activity plays a major role in the generation of toxic and carcinogenic metabolites in the large intestine, as well as in the absorption and enterohepatic circulation of many aglycone residues with protective effects, such as lignans, flavonoids, ceramide and glycyrrhetinic acid, that are liberated by the hydrolysis of the corresponding glucuronides. The complete nucleotide sequence of a 4537 bp DNA fragment containing the β-glucuronidase locus from R. gnavus E1 was determined. Five ORFs were detected on this fragment: three complete ORFs (ORF2, gus and ORF3) and two partial ORFs (ORF4 and ORF5). The products of ORF2 and ORF3 show strong similarities with many β-glucoside permeases of the phosphoenolpyruvate : β-glucoside phosphotransferase systems (PTSs), such as Escherichia coli BglC, Bacillus subtilis BglP and Bacillus halodurans PTS Enzyme II. The product of ORF5 presents strong similarities with the amino-terminal domain of Clostridium acetobutylicum β-glucosidase (bglA). The gus gene product presents similarities with several known β-glucuronidase enzymes, including those of Lactobacillus gasseri (69 %), E. coli (61 %), Clostridium perfringens (59 %) and Staphylococcus aureus (58 %). By complementing an E. coli strain in which the uidA gene encoding the enzyme was deleted, it was confirmed that the R. gnavus gus gene encodes the β-glucuronidase enzyme. Moreover, it was found that the gus gene was transcribed as part of an operon that includes ORF2, ORF3 and ORF5.
-
-
-
Clostridium pasteurianum W5 synthesizes two NifH-related polypeptides under nitrogen-fixing conditions
More LessPrevious studies identified five nifH-like genes (nifH2 through nifH6) in Clostridium pasteurianum (strain W5), where the nifH1 gene encodes the nitrogenase iron protein. Transcripts of these nifH genes, with the exception of nifH3, were detected in molybdenum-sufficient nitrogen-fixing cells. However, the size of the transcripts, the level of transcription and the presence of polypeptides encoded by the nifH-like genes were not reported. The nifH2 and nifH6 genes were extremely similar, as they seemed to differ by only two bases in a span of 2481 bp, one in the coding region and another in the upstream region. Re-examination of the DNA sequences revealed that the coding region of nifH2 and nifH6 was identical, whereas the difference in the upstream region was confirmed. Results from the authors' ongoing study of the nif genes of single-colony isolates of C. pasteurianum suggest that the nifH6 designation should be eliminated. Here the size of mRNA from nifH2 and the detection of the NifH2 polypeptide in nitrogen-fixing cells of C. pasteurianum are reported. Northern blot analysis of periodically collected nitrogen-fixing cells showed that the nifH1 and nifH2 mRNAs were present throughout growth. Addition of ammonium acetate repressed the transcription of both these genes similarly. Using an antiserum raised against NifH of Azotobacter vinelandii, two NifH-related bands were detected by Western blot analysis after electrophoretic separation of proteins in extracts of nitrogen-fixing C. pasteurianum cells. After separation of proteins by preparative SDS-PAGE, the NifH polypeptides were characterized by MALDI-TOF-MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and by ES-MS/MS (electrospray tandem mass spectrometry) analyses. The results confirmed the presence of NifH2, in addition to NifH1, in nitrogen-fixing C. pasteurianum cells.
-
-
-
Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization
More LessThe siderophore salmochelin is produced under iron-poor conditions by Salmonella and many uropathogenic Escherichia coli strains. The production of salmochelin, a C-glucosylated enterobactin, is dependent on the synthesis of enterobactin and the iroBCDEN gene cluster. An E. coli IroD protein with an N-terminal His-tag cleaved cyclic salmochelin S4 to the linear trimer salmochelin S2, the dimer salmochelin S1, and the monomers dihydroxybenzoylserine and C-glucosylated dihydroxybenzoylserine (salmochelin SX, pacifarinic acid). The periplasmic IroE protein was purified as a MalE–IroE fusion protein. This enzyme degraded salmochelin S4 and ferric-salmochelin S4 to salmochelin S2 and ferric-salmochelin S2, respectively. In E. coli, uptake of ferric-salmochelin S4 was dependent on the cleavage by IroE, and independent of the FepBDGC ABC transporter in the cytoplasmic membrane. IroC, which has similarities to ABC-multidrug-resistance proteins, was necessary for the uptake of salmochelin S2 from the periplasm into the cytoplasm. IroE did not function as a classical binding protein since salmochelin S2 was taken up in the absence of a functional IroE protein. IroC mediated the uptake of iron via enterobactin in a fepB mutant. IroE was also necessary in this case for the uptake of ferric-enterobactin, which indicated that only the linear degradation products of enterobactin were taken up via IroC. PfeE, the Pseudomonas aeruginosa IroE homologue, was cloned, and its enzymic activity was shown to be very similar to that of IroE. It is suggested that homologues in other bacteria are also periplasmic IroE-type esterases of siderophores.
-
-
-
Hyperglycosylation of glycopeptidolipid of Mycobacterium smegmatis under nutrient starvation: structural studies
More LessThe presence of a polar species of glycopeptidolipid (GPL) in carbon-starved Mycobacterium smegmatis has been reported previously. In this study, the complete structure of this GPL is established with the help of MALDI-TOF (matrix assisted laser desorption/ionization time of flight) and ESI (electrospray ionization) -MS, 13C-SEFT (spin echo Fourier transform) -NMR spectroscopy, and HPLC analysis. In the molecule, two units of a 3,4-di-O-methyl derivative of rhamnose are attached to l-alaninol via a 1→2 linkage. Various methyl derivatives of rhamnose and 6-deoxytalose were synthesized as standards to establish this structure. The accumulation of this polar GPL in M. smegmatis is sigB dependent, as a SigB-overproducing strain of M. smegmatis shows the presence of this spot in the exponential phase, and a sigB-knockout strain of M. smegmatis does not show the presence of any polar GPLs.
-
-
-
Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis
The catabolic potential for sterol degradation of fast-growing mycobacteria is well known. However, no genes or enzymes responsible for the steroid degradation process have been identified as yet in these species. One of the key enzymes required for degradation of the steroid ring structure is 3-ketosteroid Δ1-dehydrogenase (KsdD). The recent annotation of the Mycobacterium smegmatis genome (TIGR database) revealed six KsdD homologues. Targeted disruption of the MSMEG5898 (ksdD-1) gene, but not the MSMEG4855 (ksdD-2) gene, resulted in partial inactivation of the cholesterol degradation pathway and accumulation of the intermediate 4-androstene-3,17-dione. This effect was reversible by the introduction of the wild-type ksdD-1 gene into M. smegmatis ΔksdD-1 or overexpression of ksdD-2. The data indicate that KsdD1 is the main KsdD in M. smegmatis, but that KsdD2 is able to perform the cholesterol degradation process when overproduced.
-
-
-
PorH, a new channel-forming protein present in the cell wall of Corynebacterium efficiens and Corynebacterium callunae
More LessCorynebacterium callunae and Corynebacterium efficiens are close relatives of the glutamate-producing mycolata species Corynebacterium glutamicum. The properties of the pore-forming proteins, extracted by organic solvents, were studied. The cell extracts contained channel-forming proteins that formed ion-permeable channels with a single-channel conductance of about 2 to 3 nS in 1 M KCl in a lipid bilayer assay. The corresponding proteins from both corynebacteria were purified to homogeneity and were named PorHC.call and PorHC.eff. Electrophysiological studies of the channels suggested that they are wide and water-filled. Channels formed by PorHC.call are cation-selective, whereas PorHC.eff forms slightly anion-selective channels. Both proteins were partially sequenced. A multiple sequence alignment search within the known chromosome of C. efficiens demonstrated that it contains a gene that fits the partial amino acid sequence of PorHC.eff. PorHC.call shows high homology to PorHC.eff. PorHC.eff is encoded in the bacterial chromosome by a gene that is localized within the vicinity of the porA gene of C. efficiens. PorHC.eff has no signal sequence at the N terminus, which means that it is not exported by the Sec-secretion pathway. The structure of PorH in the cell wall of the corynebacteria is discussed.
-
-
-
High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors
More LessVectors have been developed for inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum in which expression of the gene of interest is driven by strong, regulated promoters from bacteriocin operons found in L. sakei strains. The activity of these promoters is controlled via a two-component signal transduction system, which responds to an externally added peptide pheromone. The vectors have a modular design, permitting easy exchange of all essential elements: the inducible promoter, the cognate regulatory system, the gene of interest, the antibiotic resistance marker and the replicon. Various variants of these so-called ‘pSIP’ vectors were constructed and tested, differing in terms of the bacteriocin regulon from which the regulatory elements were derived (sakacin A or sakacin P), the regulated promoter selected from these regulons, and the replicon (derived from p256 or pSH71). Using β-glucuronidase (GusA) and aminopeptidase N (PepN) as reporters, it was shown that the best vectors permitted inducible, pheromone-dose-dependent gene expression at very high levels, while displaying moderate basal activities when not induced. The most effective set-up was obtained using a vector containing the pSH71 replicon, the orfX promoter from the sakacin P regulon, and the cognate regulatory genes, in a L. sakei host. GusA levels obtained with this set-up were approximately ten times higher than the levels obtained with prototype pSIP versions, whereas PepN levels amounted to almost 50 % of total cellular protein.
-
-
-
Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis
Curli are necessary for the adherence of Escherichia coli to surfaces, and to each other, during biofilm formation, and the csgBA and csgDEFG operons are both required for their synthesis. A recent survey of gene expression in Pseudomonas aeruginosa biofilms has identified tolA as a gene activated in biofilms. The tol genes play a fundamental role in maintaining the outer-membrane integrity of Gram-negative bacteria. RcsC, the sensor of the RcsBCD phosphorelay, is involved, together with RcsA, in colanic acid capsule synthesis, and also modulates the expression of tolQRA and csgDEFG. In addition, the RcsBCD phosphorelay is activated in tol mutants or when Tol proteins are overexpressed. These results led the authors to investigate the role of the tol genes in biofilm formation in laboratory and clinical isolates of E. coli. It was shown that the adherence of cells was lowered in the tol mutants. This could be the result of a drastic decrease in the expression of the csgBA operon, even though the expression of csgDEFG was slightly increased under such conditions. It was also shown that the Rcs system negatively controls the expression of the two csg operons in an RcsA-dependent manner. In the tol mutants, activation of csgDEFG occurred via OmpR and was dominant upon repression by RcsB and RcsA, while these two regulatory proteins repressed csgBA through a dominant effect on the activator protein CsgD, thus affecting curli synthesis. The results demonstrate that the Rcs system, previously known to control the synthesis of the capsule and the flagella, is an additional component involved in the regulation of curli. Furthermore, it is shown that the defect in cell motility observed in the tol mutants depends on RcsB and RcsA.
-
- Biodiversity And Evolution
-
-
-
Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases
More LessAlthough most two-component signal transduction systems use a simple phosphotransfer pathway from one histidine kinase (HK) to one response regulator (RR), a multiple-step phosphorelay involving a phosphotransfer scheme of His–Asp–His–Asp was also discovered. Central to this multiple-step-type signal transduction pathway are a hybrid-type HK, containing both an HK domain and an RR receiver domain in a single protein, and a histidine-containing phosphotransfer (HPT) that can exist either as a domain in hybrid-type HKs or as a separate protein. Although multiple-step phosphorelay systems are predominant in eukaryotes, it has been previously suggested that they are less common in prokaryotes. In this study, it was found that putative hybrid-type HKs were present in 56 of 156 complete prokaryotic genomes, indicating that multiple-step phosphorelay systems are more common in prokaryotes than previously appreciated. Large expansions of hybrid-type HKs were observed in 26 prokaryotic species, including photosynthetic cyanobacteria such as Nostoc sp. PCC 7120, and several pathogenic bacteria such as Coxiella burnetii. Phylogenetic analysis indicated that there was no common ancestor for hybrid-type HKs, and their origin and expansion was achieved by lateral recruitment of a receiver domain into an HK molecule and then duplication as one unit. Lateral recruitment of additional sensory domains such as PAS was also evident. HPT domains or proteins were identified in 32 of the genomes with hybrid-type HKs; however, no significant gene expansion was observed for HPTs even in a genome with a large number of hybrid-type HKs. In addition, fewer HPTs than hybrid-type HKs were identified in all prokaryotic genomes.
-
-
- Genes And Genomes
-
-
-
Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes
The aim of this study was to evaluate the use of RNA polymerase α subunit (rpoA) and phenylalanyl-tRNA synthase (pheS) gene sequences as species identification tools for enterococci. Ninety-six representative strains comprising all currently recognized Enterococcus species were examined. rpoA gene sequences generated a robust classification into species groups similar to the one based on 16S rRNA gene sequence analysis. On the other hand, the pheS gene is a fast-evolving clock even better suited for species delineation than the rpoA gene, but not for recognition of species groups within Enterococcus as determined by both rpoA and 16S rRNA genes. All enterococcal species were clearly differentiated on the basis of their rpoA and pheS sequences. Evaluation of intraspecies variation showed that both rpoA and pheS genes have a high degree of homogeneity among strains of the same species. Strains of the same enterococcal species have at least 99 % rpoA and 97 % pheS gene sequence similarity, whereas, different enterococcal species have at maximum 97 % rpoA and 86 % pheS gene sequence similarity. It was concluded that both genes can be used as reliable tools for identification of clinical and environmental species of Enterococcus and are efficient screening methods for the detection of novel species. The sequence data obtained in this study were compared to the available atpA and 16S rRNA gene sequences. The MLSA approach to Enterococcus taxonomy provides portable, highly reproducible data with lower costs for rapid identification of all enterococcal species.
-
-
-
-
Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism
More LessHighly expressed genes in bacteria often have a stronger codon bias than genes expressed at lower levels, due to translational selection. In this study, a comparative analysis of predicted highly expressed (PHX) genes in the Streptomyces coelicolor and Streptomyces avermitilis genomes was performed using the codon adaptation index (CAI) as a numerical estimator of gene expression level. Although it has been suggested that there is little heterogeneity in codon usage in G+C-rich bacteria, considerable heterogeneity was found among genes in these two G+C-rich Streptomyces genomes. Using ribosomal protein genes as references, ∼10 % of the genes were predicted to be PHX genes using a CAI cutoff value of greater than 0·78 and 0·75 in S. coelicolor and S. avermitilis, respectively. The PHX genes showed good agreement with the experimental data on expression levels obtained from proteomic analysis by previous workers. Among 724 and 730 PHX genes identified from S. coelicolor and S. avermitilis, 368 are orthologue genes present in both genomes, which were mostly ‘housekeeping’ genes involved in cell growth. In addition, 61 orthologous gene pairs with unknown functions were identified as PHX. Only one polyketide synthase gene from each Streptomyces genome was predicted as PHX. Nevertheless, several key genes responsible for producing precursors for secondary metabolites, such as crotonyl-CoA reductase and propionyl-CoA carboxylase, and genes necessary for initiation of secondary metabolism, such as adenosylmethionine synthetase, were among the PHX genes in the two Streptomyces species. The PHX genes exclusive to each genome, and what they imply regarding cellular metabolism, are also discussed.
-
-
-
Determining the functionality of putative Tat-dependent signal peptides in Streptomyces coelicolor A3(2) by using two different reporter proteins
More LessThe availability of the complete genome sequence of Streptomyces coelicolor A3(2) has allowed the prediction of the Tat-exported proteins of this Gram-positive bacterium. To predict secreted proteins that potentially use the Tat pathway for their secretion, the TATscan program was developed. This program identified 129 putative Tat substrates. To test the validity of these predictions, nine signal sequences, including three which were not identified by existing prediction programs, were selected and fused to the structural xlnC gene in place of its native signal sequence. Xylanase C (XlnC) is a cofactorless enzyme which is secreted in an active form exclusively through the Tat-dependent pathway by Streptomyces lividans. Among the nine chosen signal sequences, seven were shown to be Tat-dependent, one was Sec-dependent and one was probably not a signal sequence. The seven Tat-dependent signal sequences comprised two lipoprotein signal sequences and three sequences not predicted by previous programs. Pulse–chase experiments showed that the precursor-processing rate in the seven transformants was generally slower than wild-type XlnC, indicating that these signal peptides were not equivalent in secretion. This suggested that there might be some incompatibility between the signal peptide and the reporter protein fused to it. To test this possibility, the signal peptides were fused to a cofactorless chitosanase (SCO0677), a Tat-dependent protein validated in this work but structurally different from XlnC. With some fluctuations, similar results were obtained with this enzyme, indicating that the type of folding of the reporter protein had little effect on the Tat secretion process.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
