1887

Abstract

, an obligately anaerobic bacterium, is implicated as a major pathogen in the development and progression of chronic periodontitis. Although expression of several virulence factors of the bacterium has been found to be affected by environmental stress such as entrance into the stationary growth phase and heat, there is relatively little information on the mechanisms that may operate in the bacterium in response to environmental stress. In this study, a novel protein (UstA) was investigated that was initially identified following two-dimensional gel analysis. Expression of UstA was upregulated in stationary phase or by exposure to atmospheric oxygen. N-terminal sequencing and database analysis with the genome sequence revealed that the UstA-encoding gene () was located upstream of a homologue of the gene encoding the universal stress protein on the chromosome. The gene appeared to be transcribed in a monocistronic fashion, as revealed by primer extension and Northern blot analysis. To elucidate the role of UstA in the bacterium, chromosomal mutants carrying a disruption of the gene were constructed. The mutant grew slower than the wild-type parent strain in rich medium, resulting in a lower yield in stationary phase. Furthermore, in this mutant, expression levels of the homologues of superoxide dismutase, thiol peroxidase and thioredoxin were markedly higher than those in the wild-type, especially in stationary phase. The mutant was more resistant to diamide, a thiol-specific oxidant, than the wild-type. In addition, the mutation suppressed hypersensitivities of the mutant to diamide, metronidazole and mitomycin C. These results suggest that UstA may play a significant role in oxidative stress responses in the bacterium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27589-0
2005-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510841.html?itemId=/content/journal/micro/10.1099/mic.0.27589-0&mimeType=html&fmt=ahah

References

  1. Amano, A., Shizukuishi, S., Tamagawa, H., Iwakura, K., Tsunasawa, S. & Tsunemitsu, A. ( 1990; ). Characterization of superoxide dismutases purified from either anaerobically maintained or aerated Bacteroides gingivalis. J Bacteriol 172, 1457–1463.
    [Google Scholar]
  2. Amano, A., Ishimoto, T., Tamagawa, H. & Shizukuishi, S. ( 1992; ). Role of superoxide dismutase in resistance of Porphyromonas gingivalis to killing by polymorphonuclear leukocytes. Infect Immun 60, 712–714.
    [Google Scholar]
  3. Amano, A., Sharma, A., Sojar, H., Kuramitsu, H. & Genco, R. ( 1994; ). Effects of temperature stress on expression of fimbriae and superoxide dismutase by Porphyromonas gingivalis. Infect Immun 62, 4682–4685.
    [Google Scholar]
  4. Bayley, D. P., Rocha, E. R. & Smith, C. J. ( 2000; ). Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193, 149–154.[CrossRef]
    [Google Scholar]
  5. Boone, D. R., Castenholz, R. W. & Garrity, G. M. (editors) ( 2001; ). Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and Deeply Branching and Phototrophic Bacteria. New York: Springer.
  6. Cha, M.-K., Kim, H.-K. & Kim, I.-H. ( 1995; ). Thioredoxin-linked “thiol peroxidase” from periplasmic space of Escherichia coli. J Biol Chem 270, 28635–28641.[CrossRef]
    [Google Scholar]
  7. Cha, M.-K., Kim, H.-K. & Kim, I.-H. ( 1996; ). Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family. J Bacteriol 178, 5610–5614.
    [Google Scholar]
  8. Chen, T., Hosogi, Y., Nishikata, K., Abbey, K., Fleischmann, R. D., Walling, J. & Duncan, M. J. ( 2004; ). Comparative whole-genome analysis of virulent and avirulent strains of Porphyromonas gingivalis. J Bacteriol 186, 5473–5479.[CrossRef]
    [Google Scholar]
  9. Edwards, D. I. ( 1993; ). Nitroimidazole drugs – action and resistance mechanisms. I. Mechanisms of action. J Antimicrob Chemother 31, 9–20.
    [Google Scholar]
  10. Eisenstark, A., Calcutt, M. J., Becker-Hapak, M. & Ivanova, A. ( 1996; ). Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Radic Biol Med 21, 975–993.[CrossRef]
    [Google Scholar]
  11. Goodwin, A., Kersulyte, D., Sisson, G., Veldhuyzen van Zanten, S. J., Berg, D. E. & Hoffman, P. S. ( 1998; ). Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol 28, 383–393.[CrossRef]
    [Google Scholar]
  12. Gustavsson, N., Diez, A. & Nystrom, T. ( 2002; ). The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol Microbiol 43, 107–117.[CrossRef]
    [Google Scholar]
  13. Hengge-Aronis, R. ( 2000; ). The general stress response in Escherichia coli. In Bacterial Stress Responses, pp. 161–178. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  14. Hengge-Aronis, R. ( 2002; ). Stationary phase gene regulation: what makes an Escherichia coli promoter σ s-selective? Curr Opin Microbiol 5, 591–595.[CrossRef]
    [Google Scholar]
  15. Herren, C. D., Rocha, E. R. & Smith, C. J. ( 2003; ). Genetic analysis of an important oxidative stress locus in the anaerobe Bacteroides fragilis. Gene 316, 167–175.[CrossRef]
    [Google Scholar]
  16. Holt, S. C. L., Kesavalu, L., Walker, S. & Genco, C. A. ( 1999; ). Virulence factors of Porphyromonas gingivalis. Periodontol 2000 20, 168–238.[CrossRef]
    [Google Scholar]
  17. Jackson, C. A., Hoffmann, B., Slakeski, N., Cleal, S., Hendtlass, A. J. & Reynolds, E. C. ( 2000; ). A consensus Porphyromonas gingivalis promoter sequence. FEMS Microbiol Lett 186, 133–138.[CrossRef]
    [Google Scholar]
  18. Jeong, J. Y., Mukhopadhyay, A. K., Akada, J. K., Dailidiene, D., Hoffman, P. S. & Berg, D. E. ( 2001; ). Roles of FrxA and RdxA nitroreductases of Helicobacter pylori in susceptibility and resistance to metronidazole. J Bacteriol 183, 5155–5162.[CrossRef]
    [Google Scholar]
  19. Kumagai, Y., Yajima, A. & Konishi, K. ( 2003; ). Peptidase activity of dipeptidyl aminopeptidase IV produced by Porphyromonas gingivalis is important but not sufficient for virulence. Microbiol Immunol 47, 735–743.[CrossRef]
    [Google Scholar]
  20. Kvint, K., Nachin, L., Diez, A. & Nystrom, T. ( 2003; ). The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 6, 140–145.[CrossRef]
    [Google Scholar]
  21. Lamont, R. J. & Jenkinson, H. F. ( 1998; ). Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62, 1244–1263.
    [Google Scholar]
  22. Lindmark, D. G. & Muller, M. ( 1976; ). Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrob Agents Chemother 10, 476–482.[CrossRef]
    [Google Scholar]
  23. Loewen, P. C., Hu, B., Strutinsky, J. & Sparling, R. ( 1998; ). Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44, 707–717.[CrossRef]
    [Google Scholar]
  24. Lu, B. & McBride, B. C. ( 1994; ). Stress response of Porphyromonas gingivalis. Oral Microbiol Immunol 9, 166–173.[CrossRef]
    [Google Scholar]
  25. Lynch, M. C. & Kuramitsu, H. K. ( 1999; ). Role of superoxide dismutase activity in the physiology of Porphyromonas gingivalis. Infect Immun 67, 3367–3375.
    [Google Scholar]
  26. Matsudaira, P. ( 1987; ). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem 262, 10035–10038.
    [Google Scholar]
  27. McCord, J. M. & Fridovich, I. ( 1969; ). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–6055.
    [Google Scholar]
  28. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Moreno, S. N., Mason, R. P., Muniz, R. P., Cruz, R. S. & Docampo, R. ( 1983; ). Generation of free radicals from metronidazole and other nitroimidazoles by Tritrichomonas foetus. J Biol Chem 258, 4051–4054.
    [Google Scholar]
  30. Murakami, Y., Imai, M., Nakamura, H. & Yoshimura, F. ( 2002; ). Separation of the outer membrane and identification of major outer membrane proteins from Porphyromonas gingivalis. Eur J Oral Sci 110, 157–162.[CrossRef]
    [Google Scholar]
  31. Nakayama, K. ( 1990; ). The superoxide dismutase-encoding gene of the obligately anaerobic bacterium Bacteroides gingivalis. Gene 96, 149–150.[CrossRef]
    [Google Scholar]
  32. Nakayama, K. ( 1994; ). Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis. J Bacteriol 176, 1939–1943.
    [Google Scholar]
  33. Nakayama, K., Kadowaki, T., Okamoto, K. & Yamamoto, K. ( 1995; ). Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem 270, 23619–23626.[CrossRef]
    [Google Scholar]
  34. Nelson, K. E., Fleischmann, R. D., DeBoy, R. T. & 20 other authors ( 2003; ). Complete genome sequence of the oral pathogenic bacterium Porphyromonas gingivalis strain W83. J Bacteriol 185, 5591–5601.[CrossRef]
    [Google Scholar]
  35. Rasoloson, D., Vaňáčová, Š., Tomková, E., Rázga, J., Hrdý, I., Tachezy, J. & Kulda, J. ( 2002; ). Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology 148, 2467–2477.
    [Google Scholar]
  36. Rocha, E. R., Owens, G., Jr & Smith, C. J. ( 2000; ). The redox-sensitive transcriptional activator OxyR regulates the peroxide response regulon in the obligate anaerobe Bacteroides fragilis. J Bacteriol 182, 5059–5069.[CrossRef]
    [Google Scholar]
  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Shelburne, C. E., Gleason, R. M., Germaine, G. R., Wolff, L. F., Mullally, B. H., Coulter, W. A. & Lopatin, D. E. ( 2002; ). Quantitative reverse transcription polymerase chain reaction analysis of Porphyromonas gingivalis gene expression in vivo. J Microbiol Methods 49, 147–156.[CrossRef]
    [Google Scholar]
  39. Shi, Y., Ratnayake, D. B., Okamoto, K., Abe, N., Yamamoto, K. & Nakayama, K. ( 1999; ). Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J Biol Chem 274, 17955–17960.[CrossRef]
    [Google Scholar]
  40. Shoji, M., Naito, M., Yukitake, H., Sato, K., Sakai, E., Ohara, N. & Nakayama, K. ( 2004; ). The major structural components of two cell surface filaments of Porphyromonas gingivalis are matured through lipoprotein precursors. Mol Microbiol 52, 1513–1525.[CrossRef]
    [Google Scholar]
  41. Storz, G. & Zheng, M. ( 2000; ). Oxidative stress. In Bacterial Stress Responses, pp. 47–59. Edited by G. Storz & R. Hengge-Aronis. Washington, DC: American Society for Microbiology.
  42. Storz, G., Tartaglia, L. A. & Ames, B. N. ( 1990; ). Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189–194.[CrossRef]
    [Google Scholar]
  43. Tang, Y. P., Dallas, M. M. & Malamy, M. H. ( 1999; ). Characterization of the BatI (Bacteroides aerotolerance) operon in Bacteroides fragilis: isolation of a B. fragilis mutant with reduced aerotolerance and impaired growth in in vivo model systems. Mol Microbiol 32, 139–149.[CrossRef]
    [Google Scholar]
  44. Ueshima, J., Shoji, M., Ratnayake, D. B., Abe, K., Yoshida, S., Yamamoto, K. & Nakayama, K. ( 2003; ). Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect Immun 71, 1170–1178.[CrossRef]
    [Google Scholar]
  45. Wick, L. M. & Egli, T. ( 2004; ). Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89, 1–45.
    [Google Scholar]
  46. Xu, J., Bjursell, M. K., Himrod, J., Deng, S., Carmichael, L. K., Chiang, H. C., Hooper, L. V. & Gordon, J. I. ( 2003; ). A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27589-0
Loading
/content/journal/micro/10.1099/mic.0.27589-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error