- Volume 151, Issue 3, 2005
Volume 151, Issue 3, 2005
- Review
-
-
-
The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together
More LessThe cell wall of Gram-positive bacteria has been a subject of detailed chemical study over the past five decades. Outside the cytoplasmic membrane of these organisms the fundamental polymer is peptidoglycan (PG), which is responsible for the maintenance of cell shape and osmotic stability. In addition, typical essential cell wall polymers such as teichoic or teichuronic acids are linked to some of the peptidoglycan chains. In this review these compounds are considered as ‘classical’ cell wall polymers. In the course of recent investigations of bacterial cell surface layers (S-layers) a different class of ‘non-classical’ secondary cell wall polymers (SCWPs) has been identified, which is involved in anchoring of S-layers to the bacterial cell surface. Comparative analyses have shown considerable differences in chemical composition, overall structure and charge behaviour of these SCWPs. This review discusses the progress that has been made in understanding the structural principles of SCWPs, which may have useful applications in S-layer-based ‘supramolecular construction kits' in nanobiotechnology.
-
-
- Microbiology Comment
-
- Cell And Developmental Biology
-
-
-
The interplay of glycogen metabolism and differentiation provides an insight into the developmental biology of Streptomyces coelicolor
More LessMycelial colonies of the developmentally complex actinomycete Streptomyces coelicolor growing on solid medium contain glycogen in two distinct locations. Phase I deposits are found in a substrate mycelium region bordering the developing aerial mycelium. Their production involves GlgBI, one of two glycogen branching enzyme isoforms. Phase II deposits occur in the upper regions of aerial hyphae, in long tip cells that are dividing, or have just divided, into unigenomic prespore compartments. Their formation involves a second branching enzyme isoform, GlgBII. To find out if the gene for the second isoform, glgBII, is regulated by any of the well-studied whiA, B, G, H or I genes needed for sporulation septation, glgBI or glgBII was disrupted in a set of whi mutants, and the glycogen phenotypes examined by transmission electron microscopy. In the whiG mutants, deposits were found throughout the aerial mycelium and the adjacent region of the substrate mycelium, but the morphology of all the deposits, i.e. whether they were in the form of granules of branched glycogen or large blobs of unbranched glycan, depended solely on GlgBI. In contrast, the whiA, B, H and I mutations had no obvious effect on the pattern of glycogen deposition, or on the spatial specificity of the branching enzyme isoforms (though phase II glycogen deposits were reduced in size and abundance in the whiA and B mutants, and increased in the whiH mutant). These results indicate that glgBII is regulated (directly or indirectly) by whiG, and not by any of the other whi genes tested, and that the aerial hyphae of a whiG mutant are atypical in being physiologically similar to the substrate hyphae from which they emerge. A new role for aerial hyphae is proposed.
-
-
-
-
Dynamic localization of penicillin-binding proteins during spore development in Bacillus subtilis
More LessDuring Bacillus subtilis spore formation, many membrane proteins that function in spore development localize to the prespore septum and, subsequently, to the outer prespore membrane. Recently, it was shown that the cell-division-specific penicillin-binding proteins (PBPs) 1 and 2b localize to the asymmetric prespore septum. Here, the author studied the localization of other PBPs, fused to green fluorescent protein (GFP), during spore formation. Fusions to PBPs 4, 2c, 2d, 2a, 3, H, 4b, 5, 4a, 4* and X were expressed during vegetative growth, and their localization was monitored during sporulation. Of these PBPs, 2c, 2d, 4b and 4* have been implicated as having a function in sporulation. It was found that PBP2c, 2d and X changed their localization, while the other PBPs tested were not affected. The putative endopeptidase PbpX appears to spiral out in a pattern that resembles FtsZ redistribution during sporulation, but a pbpX knockout strain had no distinguishable phenotype. PBP2c and 2d localize to the prespore septum and follow the membrane during engulfment, and so are redistributed to the prespore membrane. A similar pattern was observed when GFP–PBP2c was expressed in the mother cell from a sporulation-specific promoter. This work shows that various PBPs known to function during sporulation are redistributed from the cytoplasmic membrane to the prespore.
-
- Biochemistry And Molecular Biology
-
-
-
Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA
More LessParacoccus pantotrophus NKNCYSA utilizes (R)-cysteate (2-amino-3-sulfopropionate) as a sole source of carbon and energy for growth, with either nitrate or molecular oxygen as terminal electron acceptor, and the specific utilization rate of cysteate is about 2 mkat (kg protein)−1. The initial degradative reaction is catalysed by an (R)-cysteate : 2-oxoglutarate aminotransferase, which yields 3-sulfopyruvate. The latter was reduced to 3-sulfolactate by an NAD-linked sulfolactate dehydrogenase [3·3 mkat (kg protein)−1]. The inducible desulfonation reaction was not detected initially in cell extracts. However, a strongly induced protein with subunits of 8 kDa (α) and 42 kDa (β) was found and purified. The corresponding genes had similarities to those encoding altronate dehydratases, which often require iron for activity. The purified enzyme could then be shown to convert 3-sulfolactate to sulfite and pyruvate and it was termed sulfolactate sulfo-lyase (Suy). A high level of sulfite dehydrogenase was also induced during growth with cysteate, and the organism excreted sulfate. A putative regulator, OrfR, was encoded upstream of suyAB on the reverse strand. Downstream of suyAB was suyZ, which was cotranscribed with suyB. The gene, an allele of tauZ, encoded a putative membrane protein with transmembrane helices (COG2855), and is a candidate to encode the sulfate exporter needed to maintain homeostasis during desulfonation. suyAB-like genes are widespread in sequenced genomes and environmental samples where, in contrast to the current annotation, several presumably encode the desulfonation of 3-sulfolactate, a component of bacterial spores.
-
-
-
-
Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus
More LessGram-negative bacteria use a wide variety of complex mechanisms to secrete proteins across their membranes or to assemble secreted proteins into surface structures. As most archaea only possess a cytoplasmic membrane surrounded by a membrane-anchored S-layer, the organization of such complexes might be significantly different from that in Gram-negative bacteria. Five proteins of Sulfolobus solfataricus, SSO0120, SSO0572, SSO2316, SSO2387 and SSO2680, which are homologous to secretion ATPases of bacterial type II, type IV secretion systems and the type IV pili assembly machinery, were identified. The operon structures of these putative secretion systems encoding gene clusters and the expression patterns of the ATPases under different growth conditions were determined, and it was established that all five putative ATPases do show a divalent cation-dependent ATPase activity at high temperature. These results show that the archaeal secretion systems are related to the bacterial secretion systems and might be powered in a similar way.
-
-
-
Evidence for two recA genes mediating DNA repair in Bacillus megaterium
More LessIsolation and subsequent knockout of a recA-homologous gene in Bacillus megaterium DSM 319 resulted in a mutant displaying increased sensitivity to mitomycin C. However, this mutant did not exhibit UV hypersensitivity, a finding which eventually led to identification of a second functional recA gene. Evidence for recA duplicates was also obtained for two other B. megaterium strains. In agreement with potential DinR boxes located within their promoter regions, expression of both genes (recA1 and recA2) was found to be damage-inducible. Transcription from the recA2 promoter was significantly higher than that of recA1. Since a recA2 knockout could not be achieved, functional complementation studies were performed in Escherichia coli. Heterologous expression in a RecA null mutant resulted in increased survival after UV irradiation and mitomycin C treatment, proving both recA gene products to be functional in DNA repair. Thus, there is evidence for an SOS-like pathway in B. megaterium that differs from that of Bacillus subtilis.
-
-
-
Hypoxia abolishes transience of the heat-shock response in the methylotrophic yeast Hansenula polymorpha
More LessThe heat-shock response is conserved amongst practically all organisms. Almost invariably, the massive heat-shock protein (Hsp) synthesis that it induces is subsequently down-regulated, making this a transient, not a sustained, stress response. This study investigated whether the heat-shock response displays any unusual features in the methylotrophic yeast Hansenula polymorpha, since this organism exhibits the highest growth temperature (49–50 °C) identified to date for any yeast and grows at 47 °C without either thermal death or detriment to final biomass yield. Maximal levels of Hsp induction were observed with a temperature upshift of H. polymorpha from 30 °C to 47–49 °C. This heat shock induces a prolonged growth arrest, heat-shock protein synthesis being down-regulated long before growth resumes at such high temperatures. A 30 °C to 49 °C heat shock also induced thermotolerance, although H. polymorpha cells in balanced growth at 49 °C were intrinsically thermotolerant. Unexpectedly, the normal transience of the H. polymorpha heat-shock response was suppressed completely by imposing the additional stress of hypoxia at the time of the 30 °C to 49 °C temperature upshift. Hypoxia abolishing the transience of the heat-shock response appears to operate at the level of Hsp gene transcription, since the heat-induced Hsp70 mRNA was transiently induced in a heat-shocked normoxic culture but displayed sustained induction in a culture deprived of oxygen at the time of temperature upshift.
-
-
-
Identification of the DNA-binding site of the Rgg-like regulator LasX within the lactocin S promoter region
More LessLasX regulates the transcription of the divergent operons lasXY and lasA–W, which specify the production of lactocin S in Lactobacillus sakei L45. Using histidine-tagged LasX, and a DNA fragment containing the complete intergenic lasA–lasX region, electrophoresis mobility-shift (EMSA) analyses were employed to demonstrate that LasX binds to the lasA–lasX intergenic DNA. Two direct heptanucleotide motifs directly upstream of P lasA–W , and a third imperfect copy of this motif, overlapping the −10 element of P lasA–W , were identified as possible LasX-binding sites. To assess the role of the direct repeats in the binding of LasX to the intergenic lasA–lasX region, binding experiments were performed using DNA probes with different combinations of the repeats, and with arbitrarily chosen repeat substitutions. The result of these experiments demonstrated that only the middle repeat was required for the binding of LasX to the las-promoter region. This observation correlated with the results of subsequent reporter-gene analyses, thereby weakening the hypothesis of the involvement of the direct repeats in LasX-mediated transcription regulation. By analysing the ability of LasX to bind successively shortened derivatives of the original intergenic fragment, a tentative 19 bp minimum LasX-binding site was identified.
-
-
-
Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16
More LessPhasins play an important role in the formation of poly(3-hydroxybutyrate) [poly(3HB)] granules and affect their size. Recently, three homologues of the phasin protein PhaP1 were identified in Ralstonia eutropha strain H16. The functions of PhaP2, PhaP3 and PhaP4 were examined by analysis of R. eutropha H16 deletion strains (ΔphaP1, ΔphaP2, ΔphaP3, ΔphaP4, ΔphaP12, ΔphaP123 and ΔphaP1234). When cells were grown under conditions permissive for poly(3HB) accumulation, the wild-type strain and all single-phasin negative mutants (ΔphaP2, ΔphaP3 and ΔphaP4), with the exception of ΔphaP1, showed similar growth and poly(3HB) accumulation behaviour, and also the size and number of the granules were identical. The single ΔphaP1 mutant and the ΔphaP12, ΔphaP123 and ΔphaP1234 mutants showed an almost identical growth behaviour; however, they accumulated poly(3HB) at a significantly lower level than wild-type and the single ΔphaP2, ΔphaP3 or ΔphaP4 mutants. Gel-mobility-shift assays and DNaseI footprinting experiments demonstrated the capability of the transcriptional repressor PhaR to bind to a DNA region +36 to +46 bp downstream of the phaP3 start codon. The protected sequence exhibited high similarity to the binding sites of PhaR upstream of phaP1, which were identified recently. In contrast, PhaR did not bind to the upstream or intergenic regions of phaP2 and phaP4, thus indicating that the expression of these two phasins is regulated in a different way. Our current model for the regulation of phasins in R. eutropha strain H16 was extended and confirmed.
-
-
-
Novel stationary-phase-upregulated protein of Porphyromonas gingivalis influences production of superoxide dismutase, thiol peroxidase and thioredoxin
Porphyromonas gingivalis, an obligately anaerobic bacterium, is implicated as a major pathogen in the development and progression of chronic periodontitis. Although expression of several virulence factors of the bacterium has been found to be affected by environmental stress such as entrance into the stationary growth phase and heat, there is relatively little information on the mechanisms that may operate in the bacterium in response to environmental stress. In this study, a novel protein (UstA) was investigated that was initially identified following two-dimensional gel analysis. Expression of UstA was upregulated in stationary phase or by exposure to atmospheric oxygen. N-terminal sequencing and database analysis with the P. gingivalis genome sequence revealed that the UstA-encoding gene (ustA) was located upstream of a homologue of the usp gene encoding the universal stress protein on the chromosome. The ustA gene appeared to be transcribed in a monocistronic fashion, as revealed by primer extension and Northern blot analysis. To elucidate the role of UstA in the bacterium, chromosomal mutants carrying a disruption of the ustA gene were constructed. The ustA mutant grew slower than the wild-type parent strain in rich medium, resulting in a lower yield in stationary phase. Furthermore, in this mutant, expression levels of the P. gingivalis homologues of superoxide dismutase, thiol peroxidase and thioredoxin were markedly higher than those in the wild-type, especially in stationary phase. The ustA mutant was more resistant to diamide, a thiol-specific oxidant, than the wild-type. In addition, the ustA mutation suppressed hypersensitivities of the oxyR mutant to diamide, metronidazole and mitomycin C. These results suggest that UstA may play a significant role in oxidative stress responses in the bacterium.
-
-
-
Reduced initiation frequency from oriC restores viability of a temperature-sensitive Escherichia coli replisome mutant
More LessThe dnaX gene of Escherichia coli encodes τ and γ clamp loader subunits of the replisome. Cells carrying the temperature-sensitive dnaX2016 mutation were induced for the SOS response at non-permissive temperature. The SOS induction most likely resulted from extensive replication fork collapse that exceeded the cells' capacity for restart. Seven mutations in the dnaA gene that partly suppressed the dnaX2016 temperature sensitivity were isolated and characterized. Each of the mutations caused a single amino acid change in domains III and IV of the DnaA protein, where nucleotide binding and DNA binding, respectively, reside. The diversity of dnaA(Sx) mutants obtained indicated that a direct interaction between the DnaA protein and τ or γ is unlikely and that the mechanism behind suppression is related to DnaA function. All dnaA(Sx) mutant cells were compromised for initiation of DNA replication, and contained fewer active replication forks than their wild-type counterparts. Conceivably, this led to a reduced number of replication fork collapses within each dnaX2016 dnaA(Sx) cell and prevented the SOS response. Lowered availability of wild-type DnaA protein also led to partial suppression of the dnaX2016 mutation, confirming that the dnaA(Sx) mode of suppression is indirect and results from a reduced initiation frequency at oriC.
-
- Biodiversity And Evolution
-
-
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
More LessThe remarkable repetitive elements called CRISPRs (clustered regularly interspaced short palindromic repeats) consist of repeats interspaced with non-repetitive elements or ‘spacers’. CRISPRs are present in both archaea and bacteria, in association with genes involved in DNA recombination and repair. In the Yersinia pestis genome, three such elements are found at three distinct loci, one of them being highly polymorphic. The authors have sequenced a total of 109 alleles of the three Y. pestis CRISPRs and they describe 29 new spacers, most being specific to one isolate. In nine strains of Yersinia pseudotuberculosis, 132 spacers were found, of which only three are common to Y. pestis isolates. In Y. pestis of the Orientalis biovar investigated in detail here, deletion of motifs is observed but it appears that addition of new motifs to a common ancestral element is the most frequent event. This takes place at the three different loci, although at a higher rate in one of the loci, and the addition of new motifs is polarized. Interestingly, the most recently acquired spacers were found to have a homologue at another locus in the genome, the majority of these inside an inactive prophage. This is believed to be the first time that the origin of the spacers in CRISPR elements has been explained. The CRISPR structure provides a new and robust identification tool.
-
-
-
-
Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain
Candida albicans strain SC5314 contains two ALS3 alleles, which differ in sequence with respect to the number of copies of the 108 bp tandem repeat sequence within the central domain of the coding region. One allele (ALS3(12)) has 12 tandem repeat copies while the other (ALS3(9)) has 9 copies. Wild-type C. albicans (ALS3(12)/ALS3(9)) and those containing various ALS3 alleles (ALS3(12)/als3Δ(9), als3Δ(12)/ALS3(9) and als3Δ(12)/als3Δ(9)) were assayed for adhesion to monolayers of cultured vascular endothelial and pharyngeal epithelial cells. These assays showed obvious adhesive function for the larger Als3p protein, compared to a minor contribution to adhesion from the smaller protein. These functional differences in strain SC5314 prompted examination of ALS3 allelic diversity across the five major genetic clades of C. albicans. This analysis focused on the number of copies of the tandem repeat sequence within the central domain of the coding region and showed a range of alleles encoding from 6 to 19 tandem repeat copies. Clades differed with respect to prevalent ALS3 alleles and allele distribution, but were similar for the mean number of tandem repeat copies per ALS3 allele. Analysis of allelic pairing showed clade differences and the tendency for C. albicans strains to encode one longer and one shorter ALS3 allele. The allelic variability observed for ALS3 and its functional consequences observed in strain SC5314 highlight the importance of understanding ALS allelic diversity in order to draw accurate conclusions about Als protein function.
-
- Environmental Microbiology
-
-
-
Statistical assessment of a laboratory method for growing biofilms
Microbial biofilms have been grown in laboratories using a variety of different approaches. A laboratory biofilm reactor system, called the CDC biofilm reactor (CBR) system, has been devised for growing biofilms under moderate to high fluid shear stress. The reactor incorporates 24 removable biofilm growth surfaces (coupons) for sampling and analysing the biofilm. Following preliminary experiments to verify the utility of the CBR system for growing biofilms of several clinically relevant organisms, a standard operating procedure for growing a Pseudomonas aeruginosa biofilm was created. This paper presents the results of a rigorous, intra-laboratory, statistical evaluation of the repeatability and ruggedness of that procedure as well as the results of the experiments with clinically relevant organisms. For the statistical evaluations, the outcome of interest was the density (c.f.u. cm−2) of viable P. aeruginosa. Replicate experiments were conducted to assess the repeatability of the log density outcome. The mean P. aeruginosa log10 density was 7·1, independent of the coupon position within the reactor. The repeatability standard deviation of the log density based on one coupon per experiment was 0·59. Analysis of variance showed that the variability of the log density was 53 % attributable to within-experiment sources and 47 % attributable to between-experiments sources. The ruggedness evaluation applied response-surface design and regression analysis techniques, similar to those often used for sensitivity analyses in other fields of science and engineering. This approach provided a quantitative description of ruggedness; specifically, the amount the log density was altered by small adjustments to four key operational factors – time allowed for initial surface colonization, temperature, nutrient concentration, and fluid shear stress on the biofilm. The small size of the regression coefficient associated with each operational factor showed that the method was rugged; that is, relatively insensitive to minor perturbations of the four factors. These results demonstrate that the CBR system is a reliable experimental tool for growing a standard biofilm in the laboratory and that it can be adapted to study several different micro-organisms.
-
-
- Genes And Genomes
-
-
-
Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans
More LessThe presence of a 174 kb plasmid called pMUM001 in Mycobacterium ulcerans, the first example of a mycobacterial plasmid encoding a virulence determinant, was recently reported. Over half of pMUM001 is devoted to six genes, three of which encode giant polyketide synthases (PKS) that produce mycolactone, an unusual cytotoxic lipid produced by M. ulcerans. In this present study the remaining 75 non-PKS-associated protein-coding sequences (CDS) are analysed and it is shown that pMUM001 is a low-copy-number element with a functional ori that supports replication in Mycobacterium marinum but not in the fast-growing mycobacteria Mycobacterium smegmatis and Mycobacterium fortuitum. Sequence analyses revealed a highly mosaic plasmid gene structure that is reminiscent of other large plasmids. Insertion sequences (IS) and fragments of IS, some previously unreported, are interspersed among functional gene clusters, such as those genes involved in plasmid replication, the synthesis of mycolactone, and a potential phosphorelay signal transduction system. Among the IS present on pMUM001 were multiple copies of the high-copy-number M. ulcerans elements IS2404 and IS2606. No plasmid transfer systems were identified, suggesting that trans-acting factors are required for mobilization. The results presented here provide important insights into this unusual virulence plasmid from an emerging but neglected human pathogen.
-
-
-
-
Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum
Nematode-trapping fungi enter the parasitic stage by developing specific morphological structures called traps. The global patterns of gene expression in traps and mycelium of the fungus Monacrosporium haptotylum were compared. The trap of this fungus is a unicellular spherical structure called the knob, which develops on the apex of a hyphal branch. RNA was isolated from knobs and mycelium and hybridized to a cDNA array containing probes of 2822 EST clones of M. haptotylum. Despite the fact that the knobs and mycelium were grown in the same medium, there were substantial differences in the patterns of genes expressed in the two cell types. In total, 23·3 % (657 of 2822) of the putative genes were differentially expressed in knobs versus mycelium. Several of these genes displayed sequence similarities to genes known to be involved in regulating morphogenesis and cell polarity in fungi. Among them were several putative homologues for small GTPases, such as rho1, rac1 and ras1, and a rho GDP dissociation inhibitor (rdi1). Several homologues to genes involved in stress response, protein synthesis and protein degradation, transcription, and carbon metabolism were also differentially expressed. In the last category, a glycogen phosphorylase (gph1) gene homologue, one of the most upregulated genes in the knobs as compared to mycelium, was characterized. A number of the genes that were differentially expressed in trap cells are also known to be regulated during the development of infection structures in plant-pathogenic fungi. Among them, a gas1 (mas3) gene homologue (designated gks1), which is specifically expressed in appressoria of the rice blast fungus, was characterized.
-
-
-
Identification of a gene cluster encoding an arginine ATP-binding-cassette transporter in the genome of the thermophilic Gram-positive bacterium Geobacillus stearothermophilus strain DSMZ 13240
More LessA single gene cluster encoding components of a putative ATP-binding cassette (ABC) transporter for basic amino acids was identified in the incomplete genome sequence of the thermophilic Gram-positive bacterium Geobacillus stearothermophilus by blast searches. The cluster comprises three genes, and these were amplified from chromosomal DNA of G. stearothermophilus, ligated into plasmid vectors and expressed in Escherichia coli. The purified solute-binding protein (designated ArtJ) was demonstrated to bind l-arginine with high affinity (K d=0·39±0·06 μM). Competition experiments revealed only partial inhibition by excess l-lysine (38 %) and l-ornithine (46 %), while no inhibition was observed with l-histidine or other amino acids tested. The membrane-associated transport complex, composed of a permease (designated ArtM) and an ATPase component (designated ArtP), was solubilized from E. coli membranes by decanoylsucrose and purified by metal-affinity chromatography. The ArtMP complex, when incorporated into liposomes formed from a crude extract of G. stearothermophilus lipids, displayed ATPase activity in the presence of ArtJ only. Addition of l-arginine further stimulated the activity twofold. ATP hydrolysis was optimal at 60 °C and sensitive to the specific inhibitor vanadate. Analysis of kinetic parameters revealed a maximal velocity of ATP hydrolysis of 0·71 μmol Pi min−1 (mg protein)−1 and a K m (ATP) of 1·59 mM. Together, these results identify the ArtJMP complex as a high-affinity arginine ABC transporter.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)