1887

Abstract

Outer membrane vesicles (OMVs) released from Gram-negative bacteria consist of lipids, proteins, lipopolysaccharides and other molecules. OMVs are associated with several biological functions such as horizontal gene transfer, intracellular and intercellular communication, transfer of contents to host cells, and eliciting an immune response in host cells. Although hypotheses have been made concerning the mechanism of biogenesis of these vesicles, research on OMV formation is far from complete. The roles of outer membrane components, bacterial quorum sensing molecules and some specific proteins in OMV biogenesis have been studied. This review discusses the different models that have been proposed for OMV biogenesis, along with details of the biological functions of OMVs and the likely scope of future research.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079400-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2109.html?itemId=/content/journal/micro/10.1099/mic.0.079400-0&mimeType=html&fmt=ahah

References

  1. Aguilera L., Toloza L., Giménez R., Odena A., Oliveira E., Aguilar J., Badia J., Baldomà L.. ( 2014;). Proteomic analysis of outer membrane vesicles from the probiotic strain Escherichia coli Nissle 1917. . Proteomics 14:, 222–229. [CrossRef][PubMed]
    [Google Scholar]
  2. Alaniz R. C., Deatherage B. L., Lara J. C., Cookson B. T.. ( 2007;). Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. . J Immunol 179:, 7692–7701. [CrossRef][PubMed]
    [Google Scholar]
  3. Aldick T., Bielaszewska M., Uhlin B. E., Humpf H. U., Wai S. N., Karch H.. ( 2009;). Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin. . Mol Microbiol 71:, 1496–1508. [CrossRef][PubMed]
    [Google Scholar]
  4. Altindis E., Fu Y., Mekalanos J. J.. ( 2014;). Proteomic analysis of Vibrio cholerae outer membrane vesicles. . Proc Natl Acad Sci U S A 111:, E1548–E1556. [CrossRef][PubMed]
    [Google Scholar]
  5. Aoki M., Kondo M., Nakatsuka Y., Kawai K., Oshima S.. ( 2007;). Stationary phase culture supernatant containing membrane vesicles induced immunity to rainbow trout Oncorhynchus mykiss fry syndrome. . Vaccine 25:, 561–569. [CrossRef][PubMed]
    [Google Scholar]
  6. Bauman S. J., Kuehn M. J.. ( 2006;). Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. . Microbes Infect 8:, 2400–2408. [CrossRef][PubMed]
    [Google Scholar]
  7. Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L. Y., Heipieper H. J.. ( 2012;). Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. . Appl Environ Microbiol 78:, 6217–6224. [CrossRef][PubMed]
    [Google Scholar]
  8. Bendtsen J. D., Kiemer L., Fausbøll A., Brunak S.. ( 2005;). Non-classical protein secretion in bacteria. . BMC Microbiol 5:, 58. [CrossRef][PubMed]
    [Google Scholar]
  9. Berlanda Scorza F., Doro F., Rodríguez-Ortega M. J., Stella M., Liberatori S., Taddei A. R., Serino L., Gomes Moriel D., Nesta B.. & other authors ( 2008;). Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli ΔtolR IHE3034 mutant. . Mol Cell Proteomics 7:, 473–485. [CrossRef][PubMed]
    [Google Scholar]
  10. Berlanda Scorza F., Colucci A. M., Maggiore L., Sanzone S., Rossi O., Ferlenghi I., Pesce I., Caboni M., Norais N.. & other authors ( 2012;). High yield production process for Shigella outer membrane particles. . PLoS ONE 7:, e35616. [CrossRef][PubMed]
    [Google Scholar]
  11. Bernadac A., Gavioli M., Lazzaroni J. C., Raina S., Lloubès R.. ( 1998;). Escherichia coli tol-pal mutants form outer membrane vesicles. . J Bacteriol 180:, 4872–4878.[PubMed]
    [Google Scholar]
  12. Beveridge T. J.. ( 1999;). Structures of gram-negative cell walls and their derived membrane vesicles. . J Bacteriol 181:, 4725–4733.[PubMed]
    [Google Scholar]
  13. Beveridge T. J., Makin S. A., Kadurugamuwa J. L., Li Z.. ( 1997;). Interactions between biofilms and the environment. . FEMS Microbiol Rev 20:, 291–303. [CrossRef][PubMed]
    [Google Scholar]
  14. Biller S. J., Schubotz F., Roggensack S. E., Thompson A. W., Summons R. E., Chisholm S. W.. ( 2014;). Bacterial vesicles in marine ecosystems. . Science 343:, 183–186. [CrossRef][PubMed]
    [Google Scholar]
  15. Bishop D. G., Work E.. ( 1965;). An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. . Biochem J 96:, 567–576.[PubMed]
    [Google Scholar]
  16. Bodero M. D., Pilonieta M. C., Munson G. P.. ( 2007;). Repression of the inner membrane lipoprotein NlpA by Rns in enterotoxigenic Escherichia coli. . J Bacteriol 189:, 1627–1632. [CrossRef][PubMed]
    [Google Scholar]
  17. Bomberger J. M., MacEachran D. P., Coutermarsh B. A., Ye S., O’Toole G. A., Stanton B. A.. ( 2009;). Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. . PLoS Pathog 5:, e1000382. [CrossRef][PubMed]
    [Google Scholar]
  18. Boutriau D., Poolman J., Borrow R., Findlow J., Domingo J. D., Puig-Barbera J., Baldó J. M., Planelles V., Jubert A.. & other authors ( 2007;). Immunogenicity and safety of three doses of a bivalent (B : 4:p1.19,15 and B : 4:p1.7-2,4) meningococcal outer membrane vesicle vaccine in healthy adolescents. . Clin Vaccine Immunol 14:, 65–73. [CrossRef][PubMed]
    [Google Scholar]
  19. Burdett I. D., Murray R. G.. ( 1974;). Electron microscope study of septum formation in Escherichia coli strains B and B-r during synchronous growth. . J Bacteriol 119:, 1039–1056.[PubMed]
    [Google Scholar]
  20. Chatterjee D., Chaudhuri K.. ( 2011;). Association of cholera toxin with Vibrio cholerae outer membrane vesicles which are internalized by human intestinal epithelial cells. . FEBS Lett 585:, 1357–1362. [CrossRef][PubMed]
    [Google Scholar]
  21. Chatterjee S. N., Das J.. ( 1967;). Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. . J Gen Microbiol 49:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  22. Chen D. J., Osterrieder N., Metzger S. M., Buckles E., Doody A. M., DeLisa M. P., Putnam D.. ( 2010;). Delivery of foreign antigens by engineered outer membrane vesicle vaccines. . Proc Natl Acad Sci U S A 107:, 3099–3104. [CrossRef][PubMed]
    [Google Scholar]
  23. Choi D. S., Kim D. K., Choi S. J., Lee J., Choi J. P., Rho S., Park S. H., Kim Y. K., Hwang D., Gho Y. S.. ( 2011;). Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. . Proteomics 11:, 3424–3429. [CrossRef][PubMed]
    [Google Scholar]
  24. Chowdhury C., Jagannadham M. V.. ( 2013;). Virulence factors are released in association with outer membrane vesicles of Pseudomonas syringae pv. tomato T1 during normal growth. . Biochim Biophys Acta 1834:, 231–239. [CrossRef][PubMed]
    [Google Scholar]
  25. Ciofu O., Beveridge T. J., Kadurugamuwa J., Walther-Rasmussen J., Høiby N.. ( 2000;). Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. . J Antimicrob Chemother 45:, 9–13. [CrossRef][PubMed]
    [Google Scholar]
  26. De S. N.. ( 1959;). Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. . Nature 183:, 1533–1534. [CrossRef][PubMed]
    [Google Scholar]
  27. Deatherage B. L., Lara J. C., Bergsbaken T., Rassoulian Barrett S. L., Lara S., Cookson B. T.. ( 2009;). Biogenesis of bacterial membrane vesicles. . Mol Microbiol 72:, 1395–1407. [CrossRef][PubMed]
    [Google Scholar]
  28. Dorward D. W., Garon C. F.. ( 1990;). DNA is packaged within membrane derived vesicles of Gram-negative but not Gram-positive bacteria. . Appl Environ Microbiol 56:, 1960–1962.[PubMed]
    [Google Scholar]
  29. Dorward D. W., Garon C. F., Judd R. C.. ( 1989;). Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. . J Bacteriol 171:, 2499–2505.[PubMed]
    [Google Scholar]
  30. Eagon R. G., Carson K. J.. ( 1965;). Lysis of cell walls and intact cells of Pseudomonas aeruginosa by ethylenediamine tetraacetic acid and by lysozyme. . Can J Microbiol 11:, 193–201. [CrossRef][PubMed]
    [Google Scholar]
  31. Elhenawy W., Debelyy M. O., Feldman M. F.. ( 2014;). Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. . MBio 5:, e00909–e00914. [CrossRef][PubMed]
    [Google Scholar]
  32. Ellis T. N., Leiman S. A., Kuehn M. J.. ( 2010;). Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. . Infect Immun 78:, 3822–3831. [CrossRef][PubMed]
    [Google Scholar]
  33. Ferrari G., Garaguso I., Adu-Bobie J., Doro F., Taddei A. R., Biolchi A., Brunelli B., Giuliani M. M., Pizza M.. & other authors ( 2006;). Outer membrane vesicles from group B Neisseria meningitidis Δgna33 mutant: proteomic and immunological comparison with detergent-derived outer membrane vesicles. . Proteomics 6:, 1856–1866. [CrossRef][PubMed]
    [Google Scholar]
  34. Findlow J., Taylor S., Aase A., Horton R., Heyderman R., Southern J., Andrews N., Barchha R., Harrison E.. & other authors ( 2006;). Comparison and correlation of Neisseria meningitidis serogroup B immunologic assay results and human antibody responses following three doses of the Norwegian meningococcal outer membrane vesicle vaccine MenBvac. . Infect Immun 74:, 4557–4565. [CrossRef][PubMed]
    [Google Scholar]
  35. Fulsundar S., Harms K., Flaten G. E., Johnsen P. J., Chopade B. A., Nielsen K. M.. ( 2014;). Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. . Appl Environ Microbiol 80:, 3469–3483. [CrossRef][PubMed]
    [Google Scholar]
  36. Furuta N., Tsuda K., Omori H., Yoshimori T., Yoshimura F., Amano A.. ( 2009a;). Porphyromonas gingivalis outer membrane vesicles enter human epithelial cells via an endocytic pathway and are sorted to lysosomal compartments. . Infect Immun 77:, 4187–4196. [CrossRef][PubMed]
    [Google Scholar]
  37. Furuta N., Takeuchi H., Amano A.. ( 2009b;). Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. . Infect Immun 77:, 4761–4770. [CrossRef][PubMed]
    [Google Scholar]
  38. Galka F., Wai S. N., Kusch H., Engelmann S., Hecker M., Schmeck B., Hippenstiel S., Uhlin B. E., Steinert M.. ( 2008;). Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles. . Infect Immun 76:, 1825–1836. [CrossRef][PubMed]
    [Google Scholar]
  39. Graham T. R., Kozlov M. M.. ( 2010;). Interplay of proteins and lipids in generating membrane curvature. . Curr Opin Cell Biol 22:, 430–436. [CrossRef][PubMed]
    [Google Scholar]
  40. Grenier D., Mayrand D.. ( 1987;). Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. . Infect Immun 55:, 111–117.[PubMed]
    [Google Scholar]
  41. Gu X. X., Tsai C. M.. ( 1991;). Purification of rough-type lipopolysaccharides of Neisseria meningitidis from cells and outer membrane vesicles in spent media. . Anal Biochem 196:, 311–318. [CrossRef][PubMed]
    [Google Scholar]
  42. Gurung M., Moon D. C., Choi C. W., Lee J. H., Bae Y. C., Kim J., Lee Y. C., Seol S. Y., Cho D. T.. & other authors ( 2011;). Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. . PLoS ONE 6:, e27958. [CrossRef][PubMed]
    [Google Scholar]
  43. Haurat M. F., Aduse-Opoku J., Rangarajan M., Dorobantu L., Gray M. R., Curtis M. A., Feldman M. F.. ( 2011;). Selective sorting of cargo proteins into bacterial membrane vesicles. . J Biol Chem 286:, 1269–1276. [CrossRef][PubMed]
    [Google Scholar]
  44. Hayashi J., Hamada N., Kuramitsu H. K.. ( 2002;). The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. . FEMS Microbiol Lett 216:, 217–222. [CrossRef][PubMed]
    [Google Scholar]
  45. Hoekstra D., van der Laan J. W., de Leij L., Witholt B.. ( 1976;). Release of outer membrane fragments from normally growing Escherichia coli. . Biochim Biophys Acta 455:, 889–899. [CrossRef][PubMed]
    [Google Scholar]
  46. Horstman A. L., Kuehn M. J.. ( 2000;). Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. . J Biol Chem 275:, 12489–12496. [CrossRef][PubMed]
    [Google Scholar]
  47. Inagaki S., Onishi S., Kuramitsu H. K., Sharma A.. ( 2006;). Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia”. . Infect Immun 74:, 5023–5028. [CrossRef][PubMed]
    [Google Scholar]
  48. Jang K. S., Sweredoski M. J., Graham R. L., Hess S., Clemons W. M. Jr. ( 2014;). Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni. . J Proteomics 98:, 90–98. [CrossRef][PubMed]
    [Google Scholar]
  49. Jin J. S., Kwon S. O., Moon D. C., Gurung M., Lee J. H., Kim S. I., Lee J. C.. ( 2011;). Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. . PLoS ONE 6:, e17027. [CrossRef][PubMed]
    [Google Scholar]
  50. Kadurugamuwa J. L., Beveridge T. J.. ( 1995;). Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. . J Bacteriol 177:, 3998–4008.[PubMed]
    [Google Scholar]
  51. Kadurugamuwa J. L., Beveridge T. J.. ( 1996;). Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. . J Bacteriol 178:, 2767–2774.[PubMed]
    [Google Scholar]
  52. Kadurugamuwa J. L., Beveridge T. J.. ( 1997;). Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. . J Antimicrob Chemother 40:, 615–621. [CrossRef][PubMed]
    [Google Scholar]
  53. Kadurugamuwa J. L., Beveridge T. J.. ( 1999;). Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. . Microbiology 145:, 2051–2060. [CrossRef][PubMed]
    [Google Scholar]
  54. Kadurugamuwa J. L., Mayer A., Messner P., Sára M., Sleytr U. B., Beveridge T. J.. ( 1998;). S-layered Aneurinibacillus and Bacillus spp. are susceptible to the lytic action of Pseudomonas aeruginosa membrane vesicles. . J Bacteriol 180:, 2306–2311.[PubMed]
    [Google Scholar]
  55. Kahn M. E., Maul G., Goodgal S. H.. ( 1982;). Possible mechanism for donor DNA binding and transport in Haemophilus. . Proc Natl Acad Sci U S A 79:, 6370–6374. [CrossRef][PubMed]
    [Google Scholar]
  56. Kahnt J., Aguiluz K., Koch J., Treuner-Lange A., Konovalova A., Huntley S., Hoppert M., Søgaard-Andersen L., Hedderich R.. ( 2010;). Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. . J Proteome Res 9:, 5197–5208. [CrossRef][PubMed]
    [Google Scholar]
  57. Kamaguchi A., Ohyama T., Sakai E., Nakamura R., Watanabe T., Baba H., Nakayama K.. ( 2003;). Adhesins encoded by the gingipain genes of Porphyromonas gingivalis are responsible for co-aggregation with Prevotella intermedia. . Microbiology 149:, 1257–1264. [CrossRef][PubMed]
    [Google Scholar]
  58. Kato S., Kowashi Y., Demuth D. R.. ( 2002;). Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. . Microb Pathog 32:, 1–13. [CrossRef][PubMed]
    [Google Scholar]
  59. Keenan J. I., Rijpkema S. G., Durrani Z., Roake J. A.. ( 2003;). Differences in immunogenicity and protection in mice and guinea pigs following intranasal immunization with Helicobacter pylori outer membrane antigens. . FEMS Immunol Med Microbiol 36:, 199–205. [CrossRef][PubMed]
    [Google Scholar]
  60. Kesty N. C., Kuehn M. J.. ( 2004;). Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer membrane vesicles. . J Biol Chem 279:, 2069–2076. [CrossRef][PubMed]
    [Google Scholar]
  61. Kitagawa R., Takaya A., Ohya M., Mizunoe Y., Takade A., Yoshida S., Isogai E., Yamamoto T.. ( 2010;). Biogenesis of Salmonella enterica serovar typhimurium membrane vesicles provoked by induction of PagC. . J Bacteriol 192:, 5645–5656. [CrossRef][PubMed]
    [Google Scholar]
  62. Kondo K., Takade A., Amako K.. ( 1993;). Release of the outer membrane vesicles from Vibrio cholerae and Vibrio parahaemolyticus. . Microbiol Immunol 37:, 149–152. [CrossRef][PubMed]
    [Google Scholar]
  63. Kuehn M. J., Kesty N. C.. ( 2005;). Bacterial outer membrane vesicles and the host–pathogen interaction. . Genes Dev 19:, 2645–2655. [CrossRef][PubMed]
    [Google Scholar]
  64. Kulkarni H. M., Swamy ChV., Jagannadham M. V.. ( 2014;). Molecular characterization and functional analysis of outer membrane vesicles from the Antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions. . J Proteome Res 13:, 1345–1358. [CrossRef][PubMed]
    [Google Scholar]
  65. Kulp A., Kuehn M. J.. ( 2010;). Biological functions and biogenesis of secreted bacterial outer membrane vesicles. . Annu Rev Microbiol 64:, 163–184. [CrossRef][PubMed]
    [Google Scholar]
  66. Kwon S. O., Gho Y. S., Lee J. C., Kim S. I.. ( 2009;). Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate. . FEMS Microbiol Lett 297:, 150–156. [CrossRef][PubMed]
    [Google Scholar]
  67. Lee E. Y., Bang J. Y., Park G. W., Choi D. S., Kang J. S., Kim H. J., Park K. S., Lee J. O., Kim Y. K.. & other authors ( 2007;). Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. . Proteomics 7:, 3143–3153. [CrossRef][PubMed]
    [Google Scholar]
  68. Lee E. Y., Choi D. S., Kim K. P., Gho Y. S.. ( 2008;). Proteomics in gram-negative bacterial outer membrane vesicles. . Mass Spectrom Rev 27:, 535–555. [CrossRef][PubMed]
    [Google Scholar]
  69. Lee J. C., Lee E. J., Lee J. H., Jun S. H., Choi C. W., Kim S. I., Kang S. S., Hyun S.. ( 2012;). Klebsiella pneumoniae secretes outer membrane vesicles that induce the innate immune response. . FEMS Microbiol Lett 331:, 17–24. [CrossRef][PubMed]
    [Google Scholar]
  70. Li Z., Clarke A. J., Beveridge T. J.. ( 1996;). A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. . J Bacteriol 178:, 2479–2488.[PubMed]
    [Google Scholar]
  71. Li Z., Clarke A. J., Beveridge T. J.. ( 1998;). Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. . J Bacteriol 180:, 5478–5483.[PubMed]
    [Google Scholar]
  72. Loeb M. R., Kilner J.. ( 1978;). Release of a special fraction of the outer membrane from both growing and phage T4-infected Escherichia coli B. . Biochim Biophys Acta 514:, 117–127. [CrossRef][PubMed]
    [Google Scholar]
  73. MacDonald I. A., Kuehn M. J.. ( 2012;). Offense and defense: microbial membrane vesicles play both ways. . Res Microbiol 163:, 607–618. [CrossRef][PubMed]
    [Google Scholar]
  74. MacDonald I. A., Kuehn M. J.. ( 2013;). Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. . J Bacteriol 195:, 2971–2981. [CrossRef][PubMed]
    [Google Scholar]
  75. Manabe T., Kato M., Ueno T., Kawasaki K.. ( 2013;). Flagella proteins contribute to the production of outer membrane vesicles from Escherichia coli W3110. . Biochem Biophys Res Commun 441:, 151–156. [CrossRef][PubMed]
    [Google Scholar]
  76. Manning A. J., Kuehn M. J.. ( 2011;). Contribution of bacterial outer membrane vesicles to innate bacterial defense. . BMC Microbiol 11:, 258. [CrossRef][PubMed]
    [Google Scholar]
  77. Manning A. J., Kuehn M. J.. ( 2013;). Functional advantages conferred by extracellular prokaryotic membrane vesicles. . J Mol Microbiol Biotechnol 23:, 131–141. [CrossRef][PubMed]
    [Google Scholar]
  78. Maredia R., Devineni N., Lentz P., Dallo S. F., Yu J., Guentzel N., Chambers J., Arulanandam B., Haskins W. E., Weitao T.. ( 2012;). Vesiculation from Pseudomonas aeruginosa under SOS. . ScientificWorldJournal 2012:, 402919. [CrossRef][PubMed]
    [Google Scholar]
  79. Marshall A. J., Piddock L. J.. ( 1994;). Interaction of divalent cations, quinolones and bacteria. . J Antimicrob Chemother 34:, 465–483. [CrossRef][PubMed]
    [Google Scholar]
  80. Martin H. H., Heilmann H. D., Preusser H. J.. ( 1972;). State of the rigid-layer in celll walls of some gram-negative bacteria. . Arch Mikrobiol 83:, 332–346. [CrossRef][PubMed]
    [Google Scholar]
  81. Mashburn L. M., Whiteley M.. ( 2005;). Membrane vesicles traffic signals and facilitate group activities in a prokaryote. . Nature 437:, 422–425. [CrossRef][PubMed]
    [Google Scholar]
  82. Mashburn-Warren L. M., Whiteley M.. ( 2006;). Special delivery: vesicle trafficking in prokaryotes. . Mol Microbiol 61:, 839–846. [CrossRef][PubMed]
    [Google Scholar]
  83. Mashburn-Warren L., Howe J., Garidel P., Richter W., Steiniger F., Roessle M., Brandenburg K., Whiteley M.. ( 2008;). Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. . Mol Microbiol 69:, 491–502. [CrossRef][PubMed]
    [Google Scholar]
  84. Mashburn-Warren L., Howe J., Brandenburg K., Whiteley M.. ( 2009;). Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation. . J Bacteriol 191:, 3411–3414. [CrossRef][PubMed]
    [Google Scholar]
  85. Mayrand D., Grenier D.. ( 1989;). Biological activities of outer membrane vesicles. . Can J Microbiol 35:, 607–613. [CrossRef][PubMed]
    [Google Scholar]
  86. McBroom A. J., Kuehn M. J.. ( 2007;). Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. . Mol Microbiol 63:, 545–558. [CrossRef][PubMed]
    [Google Scholar]
  87. McBroom A. J., Johnson A. P., Vemulapalli S., Kuehn M. J.. ( 2006;). Outer membrane vesicle production by Escherichia coli is independent of membrane instability. . J Bacteriol 188:, 5385–5392. [CrossRef][PubMed]
    [Google Scholar]
  88. McCaig W. D., Koller A., Thanassi D. G.. ( 2013;). Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. . J Bacteriol 195:, 1120–1132. [CrossRef][PubMed]
    [Google Scholar]
  89. Meadow P. M., Wells P. L., Salkinoja-Salonen M., Nurmiaho E. L.. ( 1978;). The effect of lipopolysaccharide composition on the ultrastructure of Pseudomonas aeruginosa. . J Gen Microbiol 105:, 23–28. [CrossRef][PubMed]
    [Google Scholar]
  90. Mendez J. A., Soares N. C., Mateos J., Gayoso C., Rumbo C., Aranda J., Tomas M., Bou G.. ( 2012;). Extracellular proteome of a highly invasive multidrug-resistant clinical strain of Acinetobacter baumannii. . J Proteome Res 11:, 5678–5694.[PubMed]
    [Google Scholar]
  91. Mullaney E., Brown P. A., Smith S. M., Botting C. H., Yamaoka Y. Y., Terres A. M., Kelleher D. P., Windle H. J.. ( 2009;). Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. . Proteomics Clin Appl 3:, 785–796. [CrossRef][PubMed]
    [Google Scholar]
  92. Nevot M., Deroncelé V., Messner P., Guinea J., Mercadé E.. ( 2006;). Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3. . Environ Microbiol 8:, 1523–1533. [CrossRef][PubMed]
    [Google Scholar]
  93. Nieves W., Petersen H., Judy B. M., Blumentritt C. A., Russell-Lodrigue K., Roy C. J., Torres A. G., Morici L. A.. ( 2014;). A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis. . Clin Vaccine Immunol 21:, 747–754. [CrossRef][PubMed]
    [Google Scholar]
  94. Park S. B., Jang H. B., Nho S. W., Cha I. S., Hikima J., Ohtani M., Aoki T., Jung T. S.. ( 2011;). Outer membrane vesicles as a candidate vaccine against edwardsiellosis. . PLoS ONE 6:, e17629. [CrossRef][PubMed]
    [Google Scholar]
  95. Pierson T., Matrakas D., Taylor Y. U., Manyam G., Morozov V. N., Zhou W., van Hoek M. L.. ( 2011;). Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine. . J Proteome Res 10:, 954–967. [CrossRef][PubMed]
    [Google Scholar]
  96. Post D. M., Zhang D., Eastvold J. S., Teghanemt A., Gibson B. W., Weiss J. P.. ( 2005;). Biochemical and functional characterization of membrane blebs purified from Neisseria meningitidis serogroup B. . J Biol Chem 280:, 38383–38394. [CrossRef][PubMed]
    [Google Scholar]
  97. Raymond B., Bonsall M. B.. ( 2013;). Cooperation and the evolutionary ecology of bacterial virulence: the Bacillus cereus group as a novel study system. . Bioessays 35:, 706–716. [CrossRef][PubMed]
    [Google Scholar]
  98. Renelli M., Matias V., Lo R. Y., Beveridge T. J.. ( 2004;). DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. . Microbiology 150:, 2161–2169. [CrossRef][PubMed]
    [Google Scholar]
  99. Sabra W., Lünsdorf H., Zeng A. P.. ( 2003;). Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. . Microbiology 149:, 2789–2795. [CrossRef][PubMed]
    [Google Scholar]
  100. Sanchez C.. ( 2011;). Cellular microbiology: bacterial pea shooters. . Nat Rev Microbiol 9:, 562.[PubMed]
    [Google Scholar]
  101. Schaar V., Nordström T., Mörgelin M., Riesbeck K.. ( 2011;). Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. . Antimicrob Agents Chemother 55:, 3845–3853. [CrossRef][PubMed]
    [Google Scholar]
  102. Schaar V., Paulsson M., Mörgelin M., Riesbeck K.. ( 2013;). Outer membrane vesicles shield Moraxella catarrhalis β-lactamase from neutralization by serum IgG. . J Antimicrob Chemother 68:, 593–600. [CrossRef][PubMed]
    [Google Scholar]
  103. Schaar V., Uddbäck I., Nordström T., Riesbeck K.. ( 2014;). Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing β-lactamase derived from Haemophilus influenzae. . J Antimicrob Chemother 69:, 117–120. [CrossRef][PubMed]
    [Google Scholar]
  104. Schertzer J. W., Whiteley M.. ( 2012;). A bilayer-couple model of bacterial outer membrane vesicle biogenesis. . MBio 3:, e00297-11. [CrossRef][PubMed]
    [Google Scholar]
  105. Schild S., Nelson E. J., Bishop A. L., Camilli A.. ( 2009;). Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. . Infect Immun 77:, 472–484. [CrossRef][PubMed]
    [Google Scholar]
  106. Schooling S. R., Beveridge T. J.. ( 2006;). Membrane vesicles: an overlooked component of the matrices of biofilms. . J Bacteriol 188:, 5945–5957. [CrossRef][PubMed]
    [Google Scholar]
  107. Schooling S. R., Hubley A., Beveridge T. J.. ( 2009;). Interactions of DNA with biofilm-derived membrane vesicles. . J Bacteriol 191:, 4097–4102. [CrossRef][PubMed]
    [Google Scholar]
  108. Schwechheimer C., Sullivan C. J., Kuehn M. J.. ( 2013;). Envelope control of outer membrane vesicle production in Gram-negative bacteria. . Biochemistry 52:, 3031–3040. [CrossRef][PubMed]
    [Google Scholar]
  109. Shetty A., Chen S., Tocheva E. I., Jensen G. J., Hickey W. J.. ( 2011;). Nanopods: a new bacterial structure and mechanism for deployment of outer membrane vesicles. . PLoS ONE 6:, e20725. [CrossRef][PubMed]
    [Google Scholar]
  110. Smit J., Kamio Y., Nikaido H.. ( 1975;). Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. . J Bacteriol 124:, 942–958.[PubMed]
    [Google Scholar]
  111. Spitzer J., Poolman B.. ( 2013;). How crowded is the prokaryotic cytoplasm?. FEBS Lett 587:, 2094–2098. [CrossRef][PubMed]
    [Google Scholar]
  112. Tan T. T., Morgelin M., Forsgren A., Riesbeck K.. ( 2007;). Haemophilus influenzae survival during complement-mediated attacks is promoted by Moraxella catarrhalis outer membrane vesicles. . J Infect Dis 195:, 1661–1670. [CrossRef][PubMed]
    [Google Scholar]
  113. Tashiro Y., Toyofuku M., Nakajima-Kambe T., Uchiyama H., Nomura N.. ( 2010;). Bicyclic compounds repress membrane vesicle production and Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. . FEMS Microbiol Lett 304:, 123–130. [CrossRef][PubMed]
    [Google Scholar]
  114. Tashiro Y., Inagaki A., Shimizu M., Ichikawa S., Takaya N., Nakajima-Kambe T., Uchiyama H., Nomura N.. ( 2011;). Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa. . Biosci Biotechnol Biochem 75:, 605–607. [CrossRef][PubMed]
    [Google Scholar]
  115. Tashiro Y., Uchiyama H., Nomura N.. ( 2012;). Multifunctional membrane vesicles in Pseudomonas aeruginosa. . Environ Microbiol 14:, 1349–1362. [CrossRef][PubMed]
    [Google Scholar]
  116. Toyofuku M., Roschitzki B., Riedel K., Eberl L.. ( 2012;). Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. . J Proteome Res 11:, 4906–4915. [CrossRef][PubMed]
    [Google Scholar]
  117. van de Waterbeemd B., Mommen G. P., Pennings J. L., Eppink M. H., Wijffels R. H., van der Pol L. A., de Jong A. P.. ( 2013;). Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines. . J Proteome Res 12:, 1898–1908. [CrossRef][PubMed]
    [Google Scholar]
  118. Vasilyeva N. V., Tsfasman I. M., Suzina N. E., Stepnaya O. A., Kulaev I. S.. ( 2008;). Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. . FEBS J 275:, 3827–3835. [CrossRef][PubMed]
    [Google Scholar]
  119. Veith P. D., Chen Y. Y., Gorasia D. G., Chen D., Glew M. D., O’Brien-Simpson N. M., Cecil J. D., Holden J. A., Reynolds E. C.. ( 2014;). Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors. . J Proteome Res 13:, 2420–2432. [CrossRef][PubMed]
    [Google Scholar]
  120. Wensink J., Witholt B.. ( 1981;). Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. . Eur J Biochem 116:, 331–335. [CrossRef][PubMed]
    [Google Scholar]
  121. Whitchurch C. B., Erova T. E., Emery J. A., Sargent J. L., Harris J. M., Semmler A. B., Young M. D., Mattick J. S., Wozniak D. J.. ( 2002;). Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. . J Bacteriol 184:, 4544–4554. [CrossRef][PubMed]
    [Google Scholar]
  122. Williams J. N., Skipp P. J., Humphries H. E., Christodoulides M., O’Connor C. D., Heckels J. E.. ( 2007;). Proteomic analysis of outer membranes and vesicles from wild-type serogroup B Neisseria meningitidis and a lipopolysaccharide-deficient mutant. . Infect Immun 75:, 1364–1372. [CrossRef][PubMed]
    [Google Scholar]
  123. Work E., Knox K. W., Vesk M.. ( 1966;). The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. . Ann N Y Acad Sci 133:, 438–449. [CrossRef][PubMed]
    [Google Scholar]
  124. Yaron S., Kolling G. L., Simon L., Matthews K. R.. ( 2000;). Vesicle-mediated transfer of virulence genes from Escherichia coli O157 : H7 to other enteric bacteria. . Appl Environ Microbiol 66:, 4414–4420. [CrossRef][PubMed]
    [Google Scholar]
  125. Yonezawa H., Osaki T., Kurata S., Fukuda M., Kawakami H., Ochiai K., Hanawa T., Kamiya S.. ( 2009;). Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. . BMC Microbiol 9:, 197. [CrossRef][PubMed]
    [Google Scholar]
  126. Yonezawa H., Osaki T., Woo T., Kurata S., Zaman C., Hojo F., Hanawa T., Kato S., Kamiya S.. ( 2011;). Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori. . Anaerobe 17:, 388–390. [CrossRef][PubMed]
    [Google Scholar]
  127. Zhou L., Srisatjaluk R., Justus D. E., Doyle R. J.. ( 1998;). On the origin of membrane vesicles in gram-negative bacteria. . FEMS Microbiol Lett 163:, 223–228. [CrossRef][PubMed]
    [Google Scholar]
  128. Zhu W., Thomas C. E., Chen C. J., Van Dam C. N., Johnston R. E., Davis N. L., Sparling P. F.. ( 2005;). Comparison of immune responses to gonococcal PorB delivered as outer membrane vesicles, recombinant protein, or Venezuelan equine encephalitis virus replicon particles. . Infect Immun 73:, 7558–7568. [CrossRef][PubMed]
    [Google Scholar]
  129. Zielke R. A., Wierzbicki I. H., Weber J. V., Gafken P. R., Sikora A. E.. ( 2014;). Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. . Mol Cell Proteomics 13:, 1299–1317. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079400-0
Loading
/content/journal/micro/10.1099/mic.0.079400-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error