1887

Abstract

In , the causative agent of cholera, products of three genes, , and , govern nutritional stress related stringent response (SR). SR in bacteria is critically regulated by two intracellular small molecules, guanosine 3′-diphosphate 5′-triphosphate (pppGpp) and guanosine 3′,5′-bis(diphosphate) (ppGpp), collectively called (p)ppGpp or alarmone. Evolution of is unique in because other Gram-negative bacteria carry only and genes. Recent reports suggest that RelV is needed for pathogenesis. RelV carries a single (p)ppGpp synthetase or RelA-SpoT domain (SYNTH/RSD) and belongs to the small alarmone synthetase (SAS) family of proteins. Here, we report extensive functional characterizations of the gene by constructing several deletion and site-directed mutants followed by their controlled expression in (p)ppGpp cells of or . Substitution analysis indicated that the amino acid residues K107, D129, R132, L150 and E188 of the RSD region of RelV are essential for its activity. While K107, D129 and E188 are highly conserved in RelA and SAS proteins, L150 appears to be conserved in the latter group of enzymes, and the R132 residue was found to be unique in RelV. Extensive progressive deletion analysis indicated that the amino acid residues at positions 59 and 248 of the RelV protein are the functional N- and C-terminal boundaries, respectively. Since the minimal functional length of RelV was found to be 189 aa, which includes the 94 aa long RSD region, it seems that the flanking residues of the RSD are also important for maintaining the (p)ppGpp synthetase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079319-0
2014-09-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1855.html?itemId=/content/journal/micro/10.1099/mic.0.079319-0&mimeType=html&fmt=ahah

References

  1. Aravind L., Koonin E. V.. ( 1998;). The HD domain defines a new superfamily of metal-dependent phosphohydrolases. . Trends Biochem Sci 23:, 469–472. [CrossRef][PubMed]
    [Google Scholar]
  2. Atkinson G. C., Tenson T., Hauryliuk V.. ( 2011;). The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. . PLoS ONE 6:, e23479. [CrossRef][PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1989;). Current Protocol in Molecular Biology. NY:: John Wiley and Sons;.
    [Google Scholar]
  4. Avarbock A., Avarbock D., Teh J. S., Buckstein M., Wang Z. M., Rubin H.. ( 2005;). Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis.. Biochemistry 44:, 9913–9923. [CrossRef][PubMed]
    [Google Scholar]
  5. Avril T., Freeman S. D., Attrill H., Clarke R. G., Crocker P. R.. ( 2005;). Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. . J Biol Chem 280:, 19843–19851. [CrossRef][PubMed]
    [Google Scholar]
  6. Battesti A., Bouveret E.. ( 2006;). Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. . Mol Microbiol 62:, 1048–1063. [CrossRef][PubMed]
    [Google Scholar]
  7. Cashel M., Gentry D. R., Hernandes V. J., Vinella D.. ( 1996;). The stringent response. . In Escherichia coli and Salmonella typhimurium: cellular and molecular biology, pp. 1458–1496. Edited by Neidhardt F. C... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Chatterji D., Ojha A. K.. ( 2001;). Revisiting the stringent response, ppGpp and starvation signaling. . Curr Opin Microbiol 4:, 160–165. [CrossRef][PubMed]
    [Google Scholar]
  9. Choy H. E.. ( 2000;). The study of guanosine 5′-diphosphate 3′-diphosphate-mediated transcription regulation in vitro using a coupled transcription-translation system. . J Biol Chem 275:, 6783–6789. [CrossRef][PubMed]
    [Google Scholar]
  10. Das B., Bhadra R. K.. ( 2008;). Molecular characterization of Vibrio cholerae ΔrelA ΔspoT double mutants. . Arch Microbiol 189:, 227–238. [CrossRef][PubMed]
    [Google Scholar]
  11. Das B., Pal R. R., Bag S., Bhadra R. K.. ( 2009;). Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. . Mol Microbiol 72:, 380–398. [CrossRef][PubMed]
    [Google Scholar]
  12. Durfee T., Hansen A. M., Zhi H., Blattner F. R., Jin D. J.. ( 2008;). Transcription profiling of the stringent response in Escherichia coli.. J Bacteriol 190:, 1084–1096. [CrossRef][PubMed]
    [Google Scholar]
  13. Eymann C., Homuth G., Scharf C., Hecker M.. ( 2002;). Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. . J Bacteriol 184:, 2500–2520. [CrossRef][PubMed]
    [Google Scholar]
  14. Gentry D. R., Cashel M.. ( 1996;). Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. . Mol Microbiol 19:, 1373–1384. [CrossRef][PubMed]
    [Google Scholar]
  15. Gropp M., Strausz Y., Gross M., Glaser G.. ( 2001;). Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. . J Bacteriol 183:, 570–579. [CrossRef][PubMed]
    [Google Scholar]
  16. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. . J Bacteriol 177:, 4121–4130.[PubMed]
    [Google Scholar]
  17. Haralalka S., Nandi S., Bhadra R. K.. ( 2003;). Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. . J Bacteriol 185:, 4672–4682. [CrossRef][PubMed]
    [Google Scholar]
  18. Haseltine W. A., Block R.. ( 1973;). Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. . Proc Natl Acad Sci U S A 70:, 1564–1568. [CrossRef][PubMed]
    [Google Scholar]
  19. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D.. & other authors ( 2000;). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae.. Nature 406:, 477–483. [CrossRef][PubMed]
    [Google Scholar]
  20. Hogg T., Mechold U., Malke H., Cashel M., Hilgenfeld R.. ( 2004;). Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. . Cell 117:, 57–68. [CrossRef][PubMed]
    [Google Scholar]
  21. Jishage M., Kvint K., Shingler V., Nyström T.. ( 2002;). Regulation of sigma factor competition by the alarmone ppGpp. . Genes Dev 16:, 1260–1270. [CrossRef][PubMed]
    [Google Scholar]
  22. Lemos J. A., Lin V. K., Nascimento M. M., Abranches J., Burne R. A.. ( 2007;). Three gene products govern (p)ppGpp production by Streptococcus mutans.. Mol Microbiol 65:, 1568–1581. [CrossRef][PubMed]
    [Google Scholar]
  23. Mechold U., Murphy H., Brown L., Cashel M.. ( 2002;). Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis.. J Bacteriol 184:, 2878–2888. [CrossRef][PubMed]
    [Google Scholar]
  24. Mechold U., Potrykus K., Murphy H., Murakami K. S., Cashel M.. ( 2013;). Differential regulation by ppGpp versus pppGpp in Escherichia coli.. Nucleic Acids Res 41:, 6175–6189. [CrossRef][PubMed]
    [Google Scholar]
  25. Mittenhuber G.. ( 2001;). Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). . J Mol Microbiol Biotechnol 3:, 585–600.[PubMed]
    [Google Scholar]
  26. Murdeshwar M. S., Chatterji D.. ( 2012;). MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis.. J Bacteriol 194:, 4003–4014. [CrossRef][PubMed]
    [Google Scholar]
  27. Murray K. D., Bremer H.. ( 1996;). Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli.. J Mol Biol 259:, 41–57. [CrossRef][PubMed]
    [Google Scholar]
  28. Nanamiya H., Kasai K., Nozawa A., Yun C. S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y.. ( 2008;). Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis.. Mol Microbiol 67:, 291–304. [CrossRef][PubMed]
    [Google Scholar]
  29. Pal R. R., Bag S., Dasgupta S., Das B., Bhadra R. K.. ( 2012;). Functional characterization of the stringent response regulatory gene dksA of Vibrio cholerae and its role in modulation of virulence phenotypes. . J Bacteriol 194:, 5638–5648. [CrossRef][PubMed]
    [Google Scholar]
  30. Potrykus K., Cashel M.. ( 2008;). (p)ppGpp: still magical?. Annu Rev Microbiol 62:, 35–51. [CrossRef][PubMed]
    [Google Scholar]
  31. Schreiber G., Metzger S., Aizenman E., Roza S., Cashel M., Glaser G.. ( 1991;). Overexpression of the relA gene in Escherichia coli.. J Biol Chem 266:, 3760–3767.[PubMed]
    [Google Scholar]
  32. Seyfzadeh M., Keener J., Nomura M.. ( 1993;). spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli.. Proc Natl Acad Sci U S A 90:, 11004–11008. [CrossRef][PubMed]
    [Google Scholar]
  33. Srivatsan A., Wang J. D.. ( 2008;). Control of bacterial transcription, translation and replication by (p)ppGpp. . Curr Opin Microbiol 11:, 100–105. [CrossRef][PubMed]
    [Google Scholar]
  34. Stephens J. C., Artz S. W., Ames B. N.. ( 1975;). Guanosine 5′-diphosphate 3′-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. . Proc Natl Acad Sci U S A 72:, 4389–4393. [CrossRef][PubMed]
    [Google Scholar]
  35. Traxler M. F., Zacharia V. M., Marquardt S., Summers S. M., Nguyen H. T., Stark S. E., Conway T.. ( 2011;). Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the ‘feast to famine’ gradient in Escherichia coli.. Mol Microbiol 79:, 830–845. [CrossRef][PubMed]
    [Google Scholar]
  36. Wendrich T. M., Blaha G., Wilson D. N., Marahiel M. A., Nierhaus K. H.. ( 2002;). Dissection of the mechanism for the stringent factor RelA. . Mol Cell 10:, 779–788. [CrossRef][PubMed]
    [Google Scholar]
  37. Wu J., Hassan K. A., Skurray R. A., Brown M. H.. ( 2008;). Functional analyses reveal an important role for tyrosine residues in the staphylococcal multidrug efflux protein QacA. . BMC Microbiol 8:, 147. [CrossRef][PubMed]
    [Google Scholar]
  38. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M.. ( 1991;). Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. . J Biol Chem 266:, 5980–5990.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079319-0
Loading
/content/journal/micro/10.1099/mic.0.079319-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error