%0 Journal Article %A Dasgupta, Shreya %A Basu, Pallabi %A Pal, Ritesh Ranjan %A Bag, Satyabrata %A Bhadra, Rupak K. %T Genetic and mutational characterization of the small alarmone synthetase gene relV of Vibrio cholerae %D 2014 %J Microbiology, %V 160 %N 9 %P 1855-1866 %@ 1465-2080 %R https://doi.org/10.1099/mic.0.079319-0 %I Microbiology Society, %X In Vibrio cholerae, the causative agent of cholera, products of three genes, relA, spoT and relV, govern nutritional stress related stringent response (SR). SR in bacteria is critically regulated by two intracellular small molecules, guanosine 3′-diphosphate 5′-triphosphate (pppGpp) and guanosine 3′,5′-bis(diphosphate) (ppGpp), collectively called (p)ppGpp or alarmone. Evolution of relV is unique in V. cholerae because other Gram-negative bacteria carry only relA and spoT genes. Recent reports suggest that RelV is needed for pathogenesis. RelV carries a single (p)ppGpp synthetase or RelA-SpoT domain (SYNTH/RSD) and belongs to the small alarmone synthetase (SAS) family of proteins. Here, we report extensive functional characterizations of the relV gene by constructing several deletion and site-directed mutants followed by their controlled expression in (p)ppGpp0 cells of Escherichia coli or V. cholerae. Substitution analysis indicated that the amino acid residues K107, D129, R132, L150 and E188 of the RSD region of RelV are essential for its activity. While K107, D129 and E188 are highly conserved in RelA and SAS proteins, L150 appears to be conserved in the latter group of enzymes, and the R132 residue was found to be unique in RelV. Extensive progressive deletion analysis indicated that the amino acid residues at positions 59 and 248 of the RelV protein are the functional N- and C-terminal boundaries, respectively. Since the minimal functional length of RelV was found to be 189 aa, which includes the 94 aa long RSD region, it seems that the flanking residues of the RSD are also important for maintaining the (p)ppGpp synthetase activity. %U https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.079319-0