1887

Abstract

produces an abundance of hydrogen sulfide (HS) in the oral cavity that is mediated by several enzymes. The identification and characterization of three distinct enzymes (Fn0625, Fn1055 and Fn1220) in that catalyse the production of HS from -cysteine have been reported. In the current study, a novel enzyme involved in the production of HS in ATCC 25586, whose molecular mass had been estimated to be approximately 130 kDa, was identified by two-dimensional electrophoresis combined with MALDI-TOF MS. The enzyme, Fn1419, has previously been characterized as an -methionine γ-lyase. SDS-PAGE and gel-filtration chromatography indicated that Fn1419 has a molecular mass of 43 kDa and forms tetramers in solution. Unlike other enzymes associated with HS production in , the quaternary structure of Fn1419 was not completely disrupted by exposure to SDS. The purified recombinant enzyme exhibited a of 0.32±0.02 mM and a of 0.69±0.01 s. Based on current and published data, the enzymic activity for HS production from -cysteine in is ranked as follows: Fn1220>Fn1055>Fn1419>Fn0625. Based on kinetic values and relative mRNA levels of the respective genes, as determined by real-time quantitative PCR, the amount of HS produced by Fn1419 was estimated to be 1.9 % of the total HS produced from -cysteine in ATCC 25586. In comparison, Fn1220 appeared to contribute significantly to HS production (87.6 %).

Funding
This study was supported by the:
  • Ministry of Education, Culture, Sports, Science and Technology, Japan (Award 23592721)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.051813-0
2011-10-01
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2992.html?itemId=/content/journal/micro/10.1099/mic.0.051813-0&mimeType=html&fmt=ahah

References

  1. Calenic B., Yaegaki K., Kozhuharova A., Imai T. ( 2010a). Oral malodorous compound causes oxidative stress and p53-mediated programmed cell death in keratinocyte stem cells. J Periodontol 81:1317–1323 [View Article][PubMed]
    [Google Scholar]
  2. Calenic B., Yaegaki K., Murata T., Imai T., Aoyama I., Sato T., Ii H. ( 2010b). Oral malodorous compound triggers mitochondrial-dependent apoptosis and causes genomic DNA damage in human gingival epithelial cells. J Periodontal Res 45:31–37 [View Article][PubMed]
    [Google Scholar]
  3. Carlsson J., Larsen J. T., Edlund M. B. ( 1993). Peptostreptococcus micros has a uniquely high capacity to form hydrogen sulfide from glutathione. Oral Microbiol Immunol 8:42–45 [View Article][PubMed]
    [Google Scholar]
  4. Claesson R., Edlund M. B., Persson S., Carlsson J. ( 1990). Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol 5:137–142 [View Article][PubMed]
    [Google Scholar]
  5. Dzink J. L., Socransky S. S., Haffajee A. D. ( 1988). The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol 15:316–323 [View Article][PubMed]
    [Google Scholar]
  6. Fujimura M., Calenic B., Yaegaki K., Murata T., Ii H., Imai T., Sato T., Izumi Y. ( 2010). Oral malodorous compound activates mitochondrial pathway inducing apoptosis in human gingival fibroblasts. Clin Oral Investig 14:367–373 [View Article][PubMed]
    [Google Scholar]
  7. Fukamachi H., Nakano Y., Yoshimura M., Koga T. ( 2002). Cloning and characterization of the l-cysteine desulfhydrase gene of Fusobacterium nucleatum . FEMS Microbiol Lett 215:75–80[PubMed]
    [Google Scholar]
  8. Fukamachi H., Nakano Y., Okano S., Shibata Y., Abiko Y., Yamashita Y. ( 2005). High production of methyl mercaptan by l-methionine-α-deamino-γ-mercaptomethane lyase from Treponema denticola . Biochem Biophys Res Commun 331:127–131 [View Article][PubMed]
    [Google Scholar]
  9. Hasegawa Y., Iwami J., Sato K., Park Y., Nishikawa K., Atsumi T., Moriguchi K., Murakami Y., Lamont R. J. et al. & other authors ( 2009). Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2. Microbiology 155:3333–3347 [View Article][PubMed]
    [Google Scholar]
  10. Horowitz A., Folke L. E. ( 1973). Hydrogen sulfide production in the periodontal environment. J Periodontol 44:390–395[PubMed] [CrossRef]
    [Google Scholar]
  11. Ii H., Imai T., Yaegaki K., Irie K., Ekuni D., Morita M. ( 2010). Oral malodorous compound induces osteoclast differentiation without receptor activator of nuclear factor κB ligand. J Periodontol 81:1691–1697 [View Article][PubMed]
    [Google Scholar]
  12. Imai T., Ii H., Yaegaki K., Murata T., Sato T., Kamoda T. ( 2009). Oral malodorous compound inhibits osteoblast proliferation. J Periodontol 80:2028–2034 [View Article][PubMed]
    [Google Scholar]
  13. Irie K., Ekuni D., Yamamoto T., Morita M., Yaegaki K., Ii H., Imai T. ( 2009). A single application of hydrogen sulphide induces a transient osteoclast differentiation with RANKL expression in the rat model. Arch Oral Biol 54:723–729 [View Article][PubMed]
    [Google Scholar]
  14. Ito S., Nagamune H., Tamura H., Yoshida Y. ( 2008). Identification and molecular analysis of βC–S lyase producing hydrogen sulfide in Streptococcus intermedius . J Med Microbiol 57:1411–1419 [View Article][PubMed]
    [Google Scholar]
  15. Lockwood B. C., Coombs G. H. ( 1991). Purification and characterization of methionine γ-lyase from Trichomonas vaginalis . Biochem J 279:675–682[PubMed]
    [Google Scholar]
  16. Masuda T., Murakami Y., Noguchi T., Yoshimura F. ( 2006). Effects of various growth conditions in a chemostat on expression of virulence factors in Porphyromonas gingivalis . Appl Environ Microbiol 72:3458–3467 [View Article][PubMed]
    [Google Scholar]
  17. Moore W. E., Moore L. V. ( 1994). The bacteria of periodontal diseases. Periodontol 2000 5:66–77 [View Article][PubMed]
    [Google Scholar]
  18. Murata T., Yaegaki K., Qian W., Herai M., Calenic B., Imai T., Sato T., Tanaka T., Kamoda T., Ii H. ( 2008). Hydrogen sulfide induces apoptosis in epithelial cells derived from human gingiva. J Breath Res 2:017007 [View Article][PubMed]
    [Google Scholar]
  19. Ng W., Tonzetich J. ( 1984). Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa. J Dent Res 63:994–997 [View Article][PubMed]
    [Google Scholar]
  20. Ohta K., Makinen K. K., Loesche W. J. ( 1986). Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun 53:213–220[PubMed]
    [Google Scholar]
  21. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. ( 1995). How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423 [CrossRef]
    [Google Scholar]
  22. Papapanou P. N., Sellén A., Wennström J. L., Dahlén G. ( 1993). An analysis of the subgingival microflora in randomly selected subjects. Oral Microbiol Immunol 8:24–29 [View Article][PubMed]
    [Google Scholar]
  23. Persson S. ( 1992). Hydrogen sulfide and methyl mercaptan in periodontal pockets. Oral Microbiol Immunol 7:378–379 [View Article][PubMed]
    [Google Scholar]
  24. Persson S., Edlund M. B., Claesson R., Carlsson J. ( 1990). The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol 5:195–201 [View Article][PubMed]
    [Google Scholar]
  25. Ratcliff P. A., Johnson P. W. ( 1999). The relationship between oral malodor, gingivitis, and periodontitis. A review. J Periodontol 70:485–489 [View Article][PubMed]
    [Google Scholar]
  26. Rizzo A. A. ( 1967). The possible role of hydrogen sulfide in human periodontal disease. I. Hydrogen sulfide production in periodontal pockets. Periodontics 5:233–236[PubMed]
    [Google Scholar]
  27. Sasaki-Imamura T., Yano A., Yoshida Y. ( 2010). Production of indole from l-tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl Environ Microbiol 76:4260–4268 [View Article][PubMed]
    [Google Scholar]
  28. Sato D., Nozaki T. ( 2009). Methionine γ-lyase: the unique reaction mechanism, physiological roles, and therapeutic applications against infectious diseases and cancers. IUBMB Life 61:1019–1028 [View Article][PubMed]
    [Google Scholar]
  29. Sato D., Yamagata W., Harada S., Nozaki T. ( 2008). Kinetic characterization of methionine γ-lyases from the enteric protozoan parasite Entamoeba histolytica against physiological substrates and trifluoromethionine, a promising lead compound against amoebiasis. FEBS J 275:548–560 [View Article][PubMed]
    [Google Scholar]
  30. Schmidt A. ( 1987). d-Cysteine desulfhydrase from spinach. Methods Enzymol 143:449–451
    [Google Scholar]
  31. Socransky S. S., Haffajee A. D. ( 2002). Dental biofilms: difficult therapeutic targets. Periodontol 2000 28:12–55 [View Article][PubMed]
    [Google Scholar]
  32. Socransky S. S., Haffajee A. D., Dzink J. L., Hillman J. D. ( 1988). Associations between microbial species in subgingival plaque samples. Oral Microbiol Immunol 3:1–7 [View Article][PubMed]
    [Google Scholar]
  33. Takeuchi H., Setoguchi T., Machigashira M., Kanbara K., Izumi Y. ( 2008). Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an elevated p21 Cip1 level in Ca9-22 cells. J Periodontal Res 43:90–95 [View Article][PubMed]
    [Google Scholar]
  34. Yaegaki K., Qian W., Murata T., Imai T., Sato T., Tanaka T., Kamoda T. ( 2008). Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblasts. J Periodontal Res 43:391–399 [View Article][PubMed]
    [Google Scholar]
  35. Yoshida Y., Nakano Y., Amano A., Yoshimura M., Fukamachi H., Oho T., Koga T. ( 2002). lcd from Streptococcus anginosus encodes a C-S lyase with α,β-elimination activity that degrades l-cysteine. Microbiology 148:3961–3970[PubMed]
    [Google Scholar]
  36. Yoshida Y., Negishi M., Amano A., Oho T., Nakano Y. ( 2003). Differences in the βC-S lyase activities of viridans group streptococci. Biochem Biophys Res Commun 300:55–60 [View Article][PubMed]
    [Google Scholar]
  37. Yoshida Y., Ito S., Kamo M., Kezuka Y., Tamura H., Kunimatsu K., Kato H. ( 2010a). Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology 156:2260–2269 [View Article][PubMed]
    [Google Scholar]
  38. Yoshida Y., Ito S., Tamura H., Kunimatsu K. ( 2010b). Use of a novel assay to evaluate enzymes that produce hydrogen sulfide in Fusobacterium nucleatum . J Microbiol Methods 80:313–315 [View Article][PubMed]
    [Google Scholar]
  39. Yoshida Y., Suwabe K., Nagano K., Kezuka Y., Kato H., Yoshimura F. ( 2011). Identification and enzymic analysis of a novel protein associated with production of hydrogen sulfide and l-serine from l-cysteine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology 157:2164–2171 [View Article][PubMed]
    [Google Scholar]
  40. Yoshimura M., Nakano Y., Fukamachi H., Koga T. ( 2002). 3-Chloro-dl-alanine resistance by l-methionine-α-deamino-γ-mercaptomethane-lyase activity. FEBS Lett 523:119–122 [View Article][PubMed]
    [Google Scholar]
  41. Zhang J. H., Dong Z., Chu L. ( 2010). Hydrogen sulfide induces apoptosis in human periodontium cells. J Periodontal Res 45:71–78 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.051813-0
Loading
/content/journal/micro/10.1099/mic.0.051813-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error