-
Volume 157,
Issue 10,
2011
Volume 157, Issue 10, 2011
- Cell And Molecular Biology Of Microbes
-
-
-
The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon
More LessDickeya dadantii is a plant-pathogenic bacterium that produces cellulose-containing biofilms, called pellicles, at the air–liquid interface of liquid cultures. D. dadantii pellicle formation appears to be an emergent property dependent upon at least three gene clusters, including cellulose synthesis, type III secretion system (T3SS) and flagellar genes. The D. dadantii cellulose synthesis operon is homologous to that of Gluconacetobacter xylinus, which is used for industrial cellulose production, and the cellulose nanofibres produced by D. dadantii were similar in diameter and branching pattern to those produced by G. xylinus. Salmonella enterica, an enterobacterium closely related to D. dadantii, encodes a second type of cellulose synthesis operon, and it produced biofilm strands that differed in width and branching pattern from those of D. dadantii and G. xylinus. Unlike any previously described cellulose fibre, the D. dadantii cellulose nanofibres were decorated with bead-like structures. Mutation of the cellulose synthesis operon genes resulted in loss of cellulose synthesis and production of a cellulase-resistant biofilm. Mutation of other genes required for pellicle formation, including those encoding FliA (a sigma factor that regulates flagella production), HrpL (a sigma factor that regulates the T3SS), and AdrA, a GGDEF protein, affected both biofilm and cell morphology. Mutation of the cellulose synthase bcsA or of bcsC resulted in decreased accumulation of the T3SS-secreted protein HrpN.
-
-
-
-
Functional analysis of the nifQdctA1y4vGHIJ operon of Sinorhizobium fredii strain NGR234 using a transposon with a NifA-dependent read-out promoter
Rhizobia are a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes (Fix phenotype). Synthesis of the nitrogenase and its accessory components is under the transcriptional control of the key regulator NifA and is generally restricted to the endosymbiotic forms of rhizobia known as bacteroids. Amongst studied rhizobia, Sinorhizobium fredii strain NGR234 has the remarkable ability to fix nitrogen in association with more than 130 species in 73 legume genera that form either determinate, indeterminate or aeschynomenoid nodules. Hence, NGR234 is a model organism to study nitrogen fixation in association with a variety of legumes. The symbiotic plasmid pSfrNGR234a carries more than 50 genes that are under the transcriptional control of NifA. To facilitate the functional analysis of NifA-regulated genes a new transposable element, TnEKm-PwA, was constructed. This transposon combines the advantages of in vitro mutagenesis of cloned DNA fragments with a conditional read-out promoter from NGR234 (PwA) that reinitiates NifA-dependent transcription downstream of transposition sites. To test the characteristics of the new transposon, the nifQdctA1y4vGHIJ operon was mutated using either the Omega interposon or TnEKm-PwA. The symbiotic phenotypes on various hosts as well as the transcriptional characteristics of these mutants were analysed in detail and compared with the ineffective (Fix−) phenotype of strain NGRΔnifA, which lacks a functional copy of nifA. De novo transcription from inserted copies of TnEKm-PwA inside bacteroids was confirmed by qRT-PCR. Unexpectedly, polar mutants in dctA1 and nifQ were Fix+ on all of the hosts tested, indicating that none of the six genes of the nifQ operon of NGR234 is essential for symbiotic nitrogen fixation on plants that form nodules of either determinate or indeterminate types.
-
-
-
Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells
Chlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival. Here we used primary human endocervical epithelial cells and HeLa cells infected with C. trachomatis to examine the secretion of bacterial proteins during productive growth and persistent growth induced by ampicillin. Specifically, we observed a decrease in secretable chlamydial protease-like activity factor (CPAF) in the cytosol of host epithelial cells exposed to ampicillin with no evident reduction of CPAF product by C. trachomatis. In contrast, the expression of CopN and Tarp was downregulated, suggesting that C. trachomatis responds to ampicillin exposure by selectively altering the expression of secretable proteins. In addition, we observed a greater accumulation of outer-membrane vesicles from C. trachomatis in persistently infected cells. Taken together, these results suggest that the regulation of both gene expression and the secretion of chlamydial virulence proteins is involved in the adaptation of the bacteria to a persistent infection state in human genital epithelial cells.
-
-
-
Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins
More LessBy the analysis of the Aeromonas hydrophila ATCC7966T genome we identified A. hydrophila AH-3 MotY. A. hydrophila MotY, like MotX, is essential for the polar flagellum function energized by an electrochemical potential of Na+ as coupling ion, but is not involved in lateral flagella function energized by the proton motive force. Thus, the A. hydrophila polar flagellum stator is a complex integrated by two essential proteins, MotX and MotY, which interact with one of two redundant pairs of proteins, PomAB and PomA2B2. In an A. hydrophila motX mutant, polar flagellum motility is restored by motX complementation, but the ability of the A. hydrophila motY mutant to swim is not restored by introduction of the wild-type motY alone. However, its polar flagellum motility is restored when motX and -Y are expressed together from the same plasmid promoter. Finally, even though both the redundant A. hydrophila polar flagellum stators, PomAB and PomA2B2, are energized by the Na+ ion, they cannot be exchanged. Furthermore, Vibrio parahaemolyticus PomAB and Pseudomonas aeruginosa MotAB or MotCD are unable to restore swimming motility in A. hydrophila polar flagellum stator mutants.
-
-
-
Plasmodium falciparum NIMA-related kinase Pfnek-1: sex specificity and assessment of essentiality for the erythrocytic asexual cycle
The Plasmodium falciparum kinome includes a family of four protein kinases (Pfnek-1 to -4) related to the NIMA (never-in-mitosis) family, members of which play important roles in mitosis and meiosis in eukaryotic cells. Only one of these, Pfnek-1, which we previously characterized at the biochemical level, is expressed in asexual parasites. The other three (Pfnek-2, -3 and -4) are expressed predominantly in gametocytes, and a role for nek-2 and nek-4 in meiosis has been documented. Here we show by reverse genetics that Pfnek-1 is required for completion of the asexual cycle in red blood cells and that its expression in gametocytes in detectable by immunofluorescence in male (but not in female) gametocytes, in contrast with Pfnek-2 and Pfnek-4. This indicates that the function of Pfnek-1 is non-redundant with those of the other members of the Pfnek family and identifies Pfnek-1 as a potential target for antimalarial chemotherapy. A medium-throughput screen of a small-molecule library provides proof of concept that recombinant Pfnek-1 can be used as a target in drug discovery.
-
-
-
Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16
More LessA large number of polypeptides are attached to poly(3-hydroxybutyrate) (PHB) granules of Ralstonia eutropha, such as PHB synthase (PhaC1), several PHB depolymerases (PhaZs) and phasins (PhaPs), the regulator protein PhaR Reu , and possibly others. In this study we used the bacterial adenylate cyclase-based two-hybrid assay to investigate interactions between known PHB granule-associated proteins (PGAPs) and to screen for new PGAPs. The utility of the system was tested by the in vivo verification of previously postulated interactions of the PHB synthase subunits of R. eutropha (PhaC1 homo-oligomerization) and of Bacillus megaterium (PhaC Bmeg –PhaR Bmeg hetero-oligomerization). Nine proteins (PhaA, PhaB1, PhaC1, PhaP1–PhaP4, PhaZ1 and PhaR), with established functions in PHB metabolism of R. eutropha, were tested for interaction in all combinations. While no significant interaction was detected between the PHB synthase PhaC1 and any of the other eight tested Pha proteins, strong interactions were found between all phasin proteins, in particular between PhaP2 and PhaP4. When PhaP2 was used as bait in a two-hybrid screening experiment with a genomic library of R. eutropha, the B1934 gene product was identified in 24 out of 53 isolated clones. B1934 encodes a hypothetical protein (15.7 kDa) with similarity to phasins of PHB-accumulating bacteria. A fusion protein of eYfp and the B1934 gene product colocalized with PHB granules, confirming that B1934 represents a new phasin (PhaP5). PhaP5 was not essential for PHB granule formation, but overexpression of PhaP5 increased the number of cells with PHB granules at the cell poles.
-
-
-
CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription
In trace amounts, copper is essential for the function of key enzymes in prokaryotes and eukaryotes. Organisms have developed sophisticated mechanisms to control the cytosolic level of the metal, manage its toxicity and survive in copper-rich environments. Here we show that the Sulfolobus CopR represents a novel class of copper-responsive regulators, unique to the archaeal domain. Furthermore, by disruption of the ORF Sso2652 (copR) of the Sulfolobus solfataricus genome, we demonstrate that the gene encodes a transcriptional activator of the copper-transporting ATPase CopA gene and co-transcribed copT, encoding a putative copper-binding protein. Disruption resulted in a loss of copper tolerance in two copR-knockout mutants, while metals such as zinc, cadmium and chromium did not affect their growth. Copper sensitivity in the mutant was linked to insufficient levels of expression of CopA and CopT. The findings were further supported by time-course inductively coupled plasma optical emission spectrometry measurements, whereby continued accumulation of copper in the S. solfataricus mutant was observed. In contrast, copper accumulation in the wild-type stabilized after reaching approximately 6 pg (µg total protein)–1. Complementation of the disrupted mutant with a wild-type copy of the copR gene restored the wild-type phenotype with respect to the physiological and transcriptional response to copper. These observations, taken together, lead us to propose that CopR is an activator of copT and copA transcription, and the member of a novel class of copper-responsive regulators.
-
-
-
Characterization of a porin channel in the endosymbiont of the trypanosomatid protozoan Crithidia deanei
Crithidia deanei is a trypanosomatid protozoan that harbours a symbiotic bacterium. The partners maintain a mutualistic relationship, thus constituting an excellent model for studying metabolic exchanges between the host and the symbiont, the origin of organelles and cellular evolution. According to molecular analysis, symbionts of different trypanosomatid species share high identity and descend from a common ancestor, a β-proteobacterium of the genus Bordetella. The endosymbiont is surrounded by two membranes, like Gram-negative bacteria, but its envelope presents special features, since phosphatidylcholine is a major membrane component and the peptidoglycan layer is highly reduced, as described in other obligate intracellular bacteria. Like the process that generated mitochondria and plastids, the endosymbiosis in trypanosomatids depends on pathways that facilitate the intensive metabolic exchanges between the bacterium and the host protozoan. A search of the annotated symbiont genome database identified one sequence with identity to porin-encoding genes of the genus Bordetella. Considering that the symbiont outer membrane has a great accessibility to cytoplasm host factors, it was important to characterize this single porin-like protein using biochemical, molecular, computational and ultrastructural approaches. Antiserum against the recombinant porin-like molecule revealed that it is mainly located in the symbiont envelope. Secondary structure analysis and comparative modelling predicted the protein 3D structure as an 18-domain β-barrel, which is consistent with porin channels. Electrophysiological measurements showed that the porin displays a slight preference for cations over anions. Taken together, the data presented herein suggest that the C. deanei endosymbiont porin is phylogenetically and structurally similar to those described in Gram-negative bacteria, representing a diffusion channel that might contribute to the exchange of nutrients and metabolic precursors between the symbiont and its host cell.
-
-
-
Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA
More LessThe conversion of nicotinamide to nicotinic acid by nicotinamidase enzymes is a critical step in maintaining NAD+ homeostasis and contributes to numerous important biological processes in diverse organisms. In Borrelia burgdorferi, the nicotinamidase enzyme, PncA, is required for spirochaete survival throughout the infectious cycle. Mammals lack nicotinamidases and therefore PncA may serve as a therapeutic target for Lyme disease. Contrary to the in vivo importance of PncA, the current annotation for the pncA ORF suggests that the encoded protein may be inactive due to the absence of an N-terminal aspartic acid residue that is a conserved member of the catalytic triad of characterized PncA proteins. Herein, we have used genetic and biochemical strategies to determine the N-terminal sequence of B. burgdorferi PncA. Our data demonstrate that the PncA protein is 24 aa longer than the currently annotated sequence and that pncA translation is initiated from the rare, non-canonical initiation codon AUU. These findings are an important first step in understanding the catalytic function of this in vivo-essential protein.
-
-
-
Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins
More LessThe integrase IntI1 catalyses recombination of antibiotic-resistance gene cassettes in the integron, a widely found bacterial mobile element active in spreading antibiotic multi-resistance. We have previously shown that resistance cassette recombination rate and specificity depend on the amount of intracellular integrase. Here, we used in vivo and in vitro methods to examine convergent expression of the integrase promoter (Pint ) and of the cassette promoters (Pc and P2 ) in the prototypical plasmid-borne class 1 integron, In2. Highly conserved Pint has near consensus −10 and −35 hexamers for σ70 RNA polymerase, but there are 11 naturally occurring arrangements of Pc alone or combinations of the Pc +P2 cassette promoters (note that P2 occurs with a 14 or 17 bp spacer). Using a bi-directional reporter vector, we found that Pint is a strong promoter in vivo, but its expression is reduced by converging transcription from Pc and P2 . In addition to cis-acting convergence control of integrase expression, the regulator site prediction program, prodoric 8.9, identified sites for global regulators FIS, LexA, IHF and H-NS in and near the integron promoters. In strains mutated in each global regulator, we found that: (1) FIS repressed integrase and cassette expression; (2) LexA repressed Pint and P2 with the 14 bp spacer version of P2 and FIS was necessary for maximum LexA repression; (3) IHF activated Pint when it faced the strong 17 bp spacer P2 but did not elevate its expression versus LexA-repressed P2 with the 14 bp spacer; and (4) H-NS repressed both Pint and the 14 bp P2 but activated the 17 bp P2 cassette promoters. Mobility shift assays showed that FIS and IHF interact directly with the promoter regions and DNase I footprinting confirmed extensive protection by FIS of wild-type In2 integron promoter sequence. Thus, nucleoid-associated proteins, known to act directly in site-specific recombination, also control integron gene expression directly and possibly indirectly.
-
-
-
CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae
More LessThe human pathogen Streptococcus pneumoniae harbours many genes encoding phosphotransferase systems and sugar ABC (ATP-binding cassette) transporters, including systems for the utilization of the β-glucoside sugar cellobiose. In this study, we show that the transcriptional regulator CelR, which has previously been found to be important for pneumococcal virulence, activates the expression of the cellobiose-utilization gene cluster (cel locus) of S. pneumoniae. Expression directed by the two promoters present in the cel locus was increased in the presence of cellobiose as sole carbon source in the medium, while expression decreased in the presence of glucose in the medium. Furthermore, we have predicted a 22 bp putative CelR regulatory site (5′-YTTTCCWTAWCAWTWAGGAAAA-3′) in the promoters of celA and celB, and in silico analysis showed that it is highly conserved in other pathogenic streptococci as well. Promoter truncations of celA and celB, where the half or full CelR regulatory site was deleted, confirmed that the CelR-binding site in PcelA and PcelB is functional. Transcriptome studies with the celR mutant and in silico prediction of the CelR regulatory site in the entire D39 genome sequence show that the cel locus is the only cluster of genes under the direct control of CelR. Therefore, CelR is a regulator dedicated to the cellobiose-dependent transcriptional activation of the cel locus.
-
-
-
Insights into the function of Mycoplasma pneumoniae protein P30 from orthologous gene replacement
More LessThe attachment organelles of bacterial species belonging to the Mycoplasma pneumoniae phylogenetic cluster are required for host cytadherence, gliding motility and virulence. Despite being closely related, these bacteria possess distinct cellular morphologies and gliding characteristics. The molecular mechanisms for most attachment organelle phenotypes, including shape and ability to power motility, are obscure. The attachment organelle-associated P30 protein of M. pneumoniae is implicated in both adherence and motility, with mutations negatively impacting cell morphology, adherence, gliding and virulence. To test whether the P30 alleles of different mycoplasma species confer species-specific attachment organelle properties, we created an M. pneumoniae strain in which the Mycoplasma genitalium P30 orthologue, P32, was substituted for the native P30. Selected clones were visualized by scanning electron microscopy to assess morphology and by indirect immunofluorescence microscopy to localize P32. Cytadherence ability and gliding motility were assessed by haemadsorption assay and phase-contrast microcinematography, respectively. Cell and attachment organelle morphologies were indistinguishable from wild-type M. pneumoniae as well as M. pneumoniae II-3 expressing a C-terminally 6×His-tagged P30 construct. P32 was localized to the tip of the attachment organelle of transformant cells. Although a specific role for P30 in species-specific phenotypes was not identified, this first test of orthologous gene replacement in different mycoplasma species demonstrates that the differences in the M. pneumoniae and M. genitalium proteins contribute little if anything to the different attachment organelle phenotypes between these species.
-
-
-
Differential stringent control of Escherichia coli rRNA promoters: effects of ppGpp, DksA and the initiating nucleotides
More LessTranscription of rRNAs in Escherichia coli is directed from seven redundant rRNA operons, which are mainly regulated by their P1 promoters. Here we demonstrate by in vivo measurements that the amounts of individual rRNAs transcribed from the different operons under normal growth vary noticeably although the structures of all the P1 promoters are very similar. Moreover, we show that starvation for amino acids does not affect the seven P1 promoters in the same way. Notably, reduction of transcription from rrnD P1 was significantly lower compared to the other P1 promoters. The presence of DksA was shown to be crucial for the ppGpp-dependent downregulation of all P1 promoters. Because rrnD P1 is the only rrn promoter starting with GTP instead of ATP, we performed studies with a mutant rrnD promoter, where the initiating G+1 is replaced by A+1. These analyses demonstrated that the ppGpp sensitivity of rrn P1 promoters depends on the nature and concentration of initiating nucleoside triphosphates (iNTPs). Our results support the notion that the seven rRNA operons are differentially regulated and underline the importance of a concerted activity between ppGpp, DksA and an adequate concentration of the respective iNTP.
-
-
-
Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans
More LessThe ClpXP proteolytic complex is critical for maintaining cellular homeostasis, as well as expression of virulence properties. However, with the exception of the Spx global regulator, the molecular mechanisms by which the ClpXP complex exerts its influence in Streptococcus mutans are not well understood. Here, microarray analysis was used to provide novel insights into the scope of ClpXP proteolysis in S. mutans. In a ΔclpP strain, 288 genes showed significant changes in relative transcript amounts (P≤0.001, twofold cut-off) as compared with the parent. Similarly, 242 genes were differentially expressed by a ΔclpX strain, 113 (47 %) of which also appeared in the ΔclpP microarrays. Several genes associated with cell growth were downregulated in both mutants, consistent with the slow-growth phenotype of the Δclp strains. Among the upregulated genes were those encoding enzymes required for the biosynthesis of intracellular polysaccharides (glg genes) and malolactic fermentation (mle genes). Enhanced expression of glg and mle genes in ΔclpP and ΔclpX strains correlated with increased storage of intracellular polysaccharide and enhanced malolactic fermentation activity, respectively. Expression of several genes known or predicted to be involved in competence and mutacin production was downregulated in the Δclp strains. Follow-up transformation efficiency and deferred antagonism assays validated the microarray data by showing that competence and mutacin production were dramatically impaired in the Δclp strains. Collectively, our results reveal the broad scope of ClpXP regulation in S. mutans homeostasis and identify several virulence-related traits that are influenced by ClpXP proteolysis.
-
- Environmental And Evolutionary Microbiology
-
-
-
Gentisate 1,2-dioxygenase, in the third naphthalene catabolic gene cluster of Polaromonas naphthalenivorans CJ2, has a role in naphthalene degradation
Polaromonas naphthalenivorans strain CJ2 metabolizes naphthalene via the gentisate pathway and has recently been shown to carry a third copy of gentisate 1,2-dioxygenase (GDO), encoded by nagI3, within a previously uncharacterized naphthalene catabolic gene cluster. The role of this cluster (especially nagI3) in naphthalene metabolism of strain CJ2 was investigated by documenting patterns in regulation, transcription and enzyme activity. Transcriptional analysis of wild-type cells showed the third cluster to be polycistronic and that nagI3 was expressed at a relatively high level. Individual knockout mutants of all three nagI genes were constructed and their influence on both GDO activity and cell growth was evaluated. Of the three knockout strains, CJ2ΔnagI3 showed severely diminished GDO activity and grew slowest on aromatic substrates. These observations are consistent with the hypothesis that nagI3 may prevent toxic intracellular levels of gentisate from accumulating in CJ2 cells. All three nagI genes from strain CJ2 were cloned into Escherichia coli: the nagI2 and nagI3 genes were successfully overexpressed. The subunit mass of the GDOs were ~36–39 kDa, and their structures were deduced to be dimeric. The K m values of NagI2 and NagI3 were 31 and 10 µM, respectively, indicating that the higher affinity of NagI3 for gentisate may protect the wild-type cells from gentisate toxicity. These results provide clues for explaining why the third gene cluster, particularly the nagI3 gene, is important in strain CJ2. The organization of genes in the third gene cluster matched that of clusters in Polaromonas sp. JS666 and Leptothrix cholodnii SP-6. While horizontal gene transfer (HGT) is one hypothesis for explaining this genetic motif, gene duplication within the ancestral lineage is equally valid. The HGT hypothesis was discounted by noting that the nagI3 allele of strain CJ2 did not share high sequence identity with its homologues in Polaromonas sp. JS666 and L. cholodnii SP-6.
-
-
-
-
Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity
More LessHere we tested the hypothesis that species of the soil-inhabiting insect-pathogenic fungus Metarhizium are not randomly distributed in soils but show plant-rhizosphere-specific associations. We isolated Metarhizium from plant roots at two sites in Ontario, Canada, sequenced the 5′ EF-1α gene to discern Metarhizium species, and developed an RFLP test for rapid species identification. Results indicated a non-random association of three Metarhizium species (Metarhizium robertsii, Metarhizium brunneum and Metarhizium guizhouense) with the rhizosphere of certain types of plant species (identified to species and categorized as grasses, wildflowers, shrubs and trees). M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense. Supporting this, in vitro experiments showed that M. robertsii conidia germinated significantly better in Panicum virgatum (switchgrass) root exudate than did M. brunneum or M. guizhouense. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, predominantly Acer saccharum (sugar maple), while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types.
-
-
-
Metabolism of H2 by Desulfovibrio alaskensis G20 during syntrophic growth on lactate
More LessSyntrophic growth involves the oxidation of organic compounds and subsequent transfer of electrons to an H2- or formate-consuming micro-organism. In order to identify genes involved specifically in syntrophic growth, a mutant library of Desulfovibrio alaskensis G20 was screened for loss of the ability to grow syntrophically with Methanospirillum hungatei JF-1. A collection of 20 mutants with an impaired ability to grow syntrophically was obtained. All 20 mutants grew in pure culture on lactate under sulfidogenic conditions at a rate and to a maximum OD600 similar to those of the parental strain. The largest number of mutations that affected syntrophic growth with lactate was in genes encoding proteins involved in H2 oxidation, electron transfer, hydrogenase post-translational modification, pyruvate degradation and signal transduction. The qrcB gene, encoding a quinone reductase complex (Qrc), and cycA, encoding the periplasmic tetrahaem cytochrome c 3 (TpIc3), were required by G20 to grow syntrophically with lactate. A mutant in the hydA gene, encoding an Fe-only hydrogenase (Hyd), is also impaired in syntrophic growth with lactate. The other mutants grew more slowly than the parental strain in syntrophic culture with M. hungatei JF-1. qrcB and cycA were shown previously to be required for growth of G20 pure cultures with H2 and sulfate. Washed cells of the parental strain produced H2 from either lactate or pyruvate, but washed cells of qrcB, cycA and hydA mutants produced H2 at rates similar to the parental strain from pyruvate and did not produce significant amounts of H2 from lactate. Real-time quantitative PCR assays showed increases in expression of the above three genes during syntrophic growth compared with pure-culture growth with lactate and sulfate. Our work shows that Hyd, Qrc and TpIc3 are involved in H2 production during syntrophic lactate metabolism by D. alaskensis G20 and emphasizes the importance of H2 production for syntrophic lactate metabolism in this strain.
-
- Genes And Genomes
-
-
-
Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome
C ampylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community.
-
-
- Microbial Pathogenicity
-
-
-
An optimized in vitro blood–brain barrier model reveals bidirectional transmigration of African trypanosome strains
More LessThe transmigration of African trypanosomes across the human blood–brain barrier (BBB) is the critical step during the course of human African trypanosomiasis. The parasites Trypanosoma brucei gambiense and T. b. rhodesiense are transmitted to humans during the bite of tsetse flies. Trypanosomes multiply within the bloodstream and finally invade the central nervous system (CNS), which leads to the death of untreated patients. This project focused on the mechanisms of trypanosomal traversal across the BBB. In order to establish a suitable in vitro BBB model for parasite transmigration, different human cell lines were used, including ECV304, HBMEC and HUVEC, as well as C6 rat astrocytes. Validation of the BBB models with Escherichia coli HB101 and E. coli K1 revealed that a combination of ECV304 cells seeded on Matrigel as a semi-synthetic basement membrane and C6 astrocytes resulted in an optimal BBB model system. The BBB model showed selective permeability for the pathogenic E. coli K1 strain, and African trypanosomes were able to traverse the optimized ECV304–C6 BBB efficiently. Furthermore, coincubation indicated that paracellular macrophage transmigration does not facilitate trypanosomal BBB traversal. An inverse assembly of the BBB model demonstrated that trypanosomes were also able to transmigrate the optimized ECV304–C6 BBB backwards, indicating the relevance of the CNS as a possible reservoir of a relapsing parasitaemia.
-
-
-
-
Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form
More LessThe acute diarrhoeal disease cholera is caused by the aquatic pathogen Vibrio cholerae upon ingestion of contaminated food or water by the human host. The mechanisms by which V. cholerae is able to persist and survive in the host and aquatic environments have been studied for years; however, little is known about the factors involved in the adaptation or response of V. cholerae transitioning between these two environments. The transition from bacillary to coccoid morphology is thought to be one mechanism of survival that V. cholerae uses in response to environmental stress. Coccoid morphology has been observed for V. cholerae while in a viable but non-culturable (VBNC) state, during times of nutrient limitation, and in the water-diluted stool of cholera-infected patients. In this study we sought conditions to study the coccoid morphology of V. cholerae, and found that coccoid-shaped cells can express and produce the virulence factor toxin co-regulated pilus (TCP) and are able to colonize the infant mouse to the same extent as bacillus-shaped cells. This study suggests that TCP may be one factor that V. cholerae utilizes for adaptation and survival during the transition between the host and the aquatic environment.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
