1887

Abstract

The type III secretion system encoded by the pathogenicity island 2 (SPI-2) has a central role in the pathogenesis of systemic infections by . Sixteen genes (, , , , , , , , , , , , , , and ) of SPI-2 were targeted for PCR amplification in 57 seafood-associated serovars of . The gene of SPI-2 was found to be absent in two isolates of serovar Weltevreden, SW13 and SW39. Absence of was confirmed by sequencing using flanking primers. SW13 had only 66 bp sequence of the gene and SW39 had 58 bp sequence of this gene. A clinical isolate, . Weltevreden – SW3, 10 : r : z6 – was used to construct a deletion mutant for the gene. Significant reduction in the survival of SW3, 10 : r : z6 Δ and natural mutants SW13 and SW39 in HeLa cells suggests that has a crucial role in the intracellular survival of . Weltevreden. Expression of was upregulated during the intracellular phase of both serovar Typhimurium and clinical isolate . Weltevreden SW3, 10 : r : z6, suggesting a crucial role for this gene in the survival of . Weltevreden inside host cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043596-0
2011-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/160.html?itemId=/content/journal/micro/10.1099/mic.0.043596-0&mimeType=html&fmt=ahah

References

  1. Aggarwal, P., Singh, S. M. & Bhattacharya, M. M. ( 1985; ). An outbreak of food poisoning in a family due to Salmonella Weltevreden at Delhi. J Diarrhoeal Dis Res 3, 224–225.
    [Google Scholar]
  2. Aissa, R. B., Al-Gallas, N., Troudi, H., Belhadj, N. & Belhadj, A. ( 2007; ). Trends in Salmonella enterica serotypes isolated from human, food, animal and environment in Tunisia, 1994–2004. J Infect 55, 324–339.[CrossRef]
    [Google Scholar]
  3. Amavisit, P., Lightfoot, D., Browning, G. F. & Markhan, P. F. ( 2003; ). Variation between pathogenic serovars within Salmonella pathogenicity islands. J Bacteriol 185, 3624–3635.[CrossRef]
    [Google Scholar]
  4. Antony, B., Dias, M., Shetty, A. K. & Rekha, B. ( 2009; ). Food poisoning due to Salmonella enterica serotype Weltevreden in Mangalore. Indian J Med Microbiol 27, 257–258.[CrossRef]
    [Google Scholar]
  5. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1995; ). Current Protocols in Molecular Biology. New York. : Wiley.
    [Google Scholar]
  6. Bangtrakulnonth, A., Pornreongwong, S., Pulsrikarn, C., Sawanpanyalert, P., Hendriksen, R. S., Lo Fo Wong, D. M. & Aarestrup, F. M. ( 2004; ). Salmonella serovars from humans and other sources in Thailand, 1993–2002. Emerg Infect Dis 10, 131–136.[CrossRef]
    [Google Scholar]
  7. Bleasdale, B., Lott, P. J., Jagannathan, A., Stevens, M. P., Birtles, R. J. & Wigley, P. ( 2009; ). The Salmonella pathogenicity island 2-encoded type III secretion system is essential for the survival of Salmonella enterica serovar Typhimurium in free-living amoebae. Appl Environ Microbiol 75, 1793–1795.[CrossRef]
    [Google Scholar]
  8. Chakravortty, D., Hansen-Wester, I. & Hensel, M. ( 2002; ). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195, 1155–1166.[CrossRef]
    [Google Scholar]
  9. Chatterjee, S. S., Hossain, H., Otten, S., Kuenne, C., Kuchmina, K., Machata, S., Domann, E., Chakraborty, T. & Hain, T. ( 2006; ). Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74, 1323–1338.[CrossRef]
    [Google Scholar]
  10. Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. ( 1998; ). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 30, 175–188.[CrossRef]
    [Google Scholar]
  11. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  12. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. ( 2003; ). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47, 103–118.
    [Google Scholar]
  13. Eswarappa, S. M., Janice, J., Nagarajan, A. G., Balasundaram, S. V., Karnam, G., Dixit, N. M. & Chakravortty, D. ( 2008; ). Differentially evolved genes of Salmonella Pathogenicity Island: insights into the mechanisms of host specificity in Salmonella. PLoS One 3, e3829.[CrossRef]
    [Google Scholar]
  14. Eriksson-Ygberg, S., Clements, M. O., Rytkonen, A., Thompson, A., Holden, D. W., Hinton, J. C. D. & Rhen, M. ( 2006; ). Polynucleotide phosphorylase negatively controls spv virulence gene expression in Salmonella enterica. Infect Immun 74, 1243–1254.[CrossRef]
    [Google Scholar]
  15. Ginocchio, C. C., Rahn, K., Clarke, R. C. & Galan, J. E. ( 1997; ). Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect Immun 65, 1267–1272.
    [Google Scholar]
  16. Gorvel, J.-P. & Méresse, S. ( 2001; ). Maturation steps of the Salmonella-containing vacuole. Microbes Infect 3, 1299–1303.[CrossRef]
    [Google Scholar]
  17. Greig, J. D. & Ravel, A. ( 2009; ). Analysis of foodborne outbreak data reported internationally for source attribution. Int J Food Microbiol 130, 77–87.[CrossRef]
    [Google Scholar]
  18. Hacker, J., Blum-Oehler, G., Muhldorfer, I. & Tschape, H. ( 1997; ). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23, 1089–1097.[CrossRef]
    [Google Scholar]
  19. Håkansson, S., Schesser, K., Persson, C., Galyov, E. E., Rosqvist, R., Homble, F. & Wolf-Watz, H. ( 1996; ). The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J 15, 5812–5823.
    [Google Scholar]
  20. Hansen-Wester, I. & Hensel, M. ( 2001; ). Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect 3, 549–559.[CrossRef]
    [Google Scholar]
  21. Heithoff, D. M., Shimp, W. R., Lau, P. W., Badi, G., Enioutina, E. Y., Daynes, R. A., Byrne, B. A., House, J. K. & Mahan, M. J. ( 2008; ). Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol 74, 1757–1766.[CrossRef]
    [Google Scholar]
  22. Hensel, M. ( 2004; ). Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294, 95–102.[CrossRef]
    [Google Scholar]
  23. Hensel, M., Shea, J. E., Baumler, A. J., Gleeson, C., Blattner, F. R. & Holden, D. W. ( 1997; ). Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol 179, 1105–1111.
    [Google Scholar]
  24. Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F. C. & Holden, D. W. ( 1998; ). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30, 163–174.[CrossRef]
    [Google Scholar]
  25. Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. ( 1999; ). The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32, 275–287.[CrossRef]
    [Google Scholar]
  26. Hinton, J. C., Hautefort, I., Eriksson, S., Thompson, A. & Rhen, M. ( 2004; ). Benefits and pitfalls of using microarrays to monitor bacterial gene expression during infection. Curr Opin Microbiol 7, 277–282.[CrossRef]
    [Google Scholar]
  27. Hu, Q., Coburn, B., Deng, W., Li, Y., Shi, X., Lan, Q., Wang, B., Coombes, B. K. & Finlay, B. B. ( 2008; ). Salmonella enterica serovar Senftenberg human clinical isolates lacking SPI-1. J Clin Microbiol 46, 1330–1336.[CrossRef]
    [Google Scholar]
  28. Jones, G. W. & Richardson, L. A. ( 1981; ). The attachment to, and invasion of HeLa cells by Salmonella typhimurium : the contribution of mannose-sensitive and mannose-resistant haemagglutinating activities. J Gen Microbiol 127, 361–370.
    [Google Scholar]
  29. Jones, G. W., Richardson, L. A. & Uhlman, D. ( 1981; ). The invasion of HeLa cells by Salmonella typhinmurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J Gen Microbiol 127, 351–360.
    [Google Scholar]
  30. Jones, D. D., Law, R. & Bej, A. K. ( 1993; ). Detection of Salmonella spp. in oysters using polymerase chain reaction (PCR) and gene probes. J Food Sci 58, 1191–1197.[CrossRef]
    [Google Scholar]
  31. Klein, J. R. & Jones, B. D. ( 2001; ). Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect Immun 69, 737–743.[CrossRef]
    [Google Scholar]
  32. Knodler, L. A. & Steele-Mortimer, O. ( 2003; ). Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4, 587–599.[CrossRef]
    [Google Scholar]
  33. Koonse, B., Burkhardt, W., III, Chirtel, S. & Hoskin, G. P. ( 2005; ). Salmonella and sanitary quality of aquacultured shrimp. J Food Prot 68, 2527–2532.
    [Google Scholar]
  34. Kuhle, V. & Hensel, M. ( 2004; ). Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cell Mol Life Sci 61, 2812–2826.[CrossRef]
    [Google Scholar]
  35. Kumar, Y., Sharma, A., Sehgal, R. & Kumar, S. ( 2009; ). Distribution trends of Salmonella serovars in India (2001–2005). Trans R Soc Trop Med Hyg 103, 390–394.[CrossRef]
    [Google Scholar]
  36. Lacey, R. W. ( 1993; ). Foodborne bacterial infections. Parasitology 107, S75–S93.[CrossRef]
    [Google Scholar]
  37. Link, A. J., Phillips, D. & Church, G. M. ( 1997; ). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228–6237.
    [Google Scholar]
  38. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  39. Lucchini, S., Liu, H., Jin, Q., Hinton, J. C. D. & Yu, J. ( 2005; ). Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun 73, 88–102.[CrossRef]
    [Google Scholar]
  40. Mastroeni, P., Vazquez-Torres, A., Fang, F. C., Xu, Y., Khan, S., Hormaeche, C. E. & Dougan, G. ( 2000; ). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med 192, 237–248.[CrossRef]
    [Google Scholar]
  41. Padungtod, P. & Kaneene, J. B. ( 2006; ). Salmonella in food animals and humans in northern Thailand. Int J Food Microbiol 108, 346–354.
    [Google Scholar]
  42. Paulin, S. M., Jagannathan, A., Campbell, J., Wallis, T. S. & Stevens, M. P. ( 2007; ). Net replication of Salmonella enterica serovars Typhimurium and Choleraesuis in porcine intestinal mucosa and nodes is associated with their differential virulence. Infect Immun 75, 3950–3960.[CrossRef]
    [Google Scholar]
  43. Rahn, K., De-Grandis, S. A., Clarke, R. C., McEwen, S. A., Galán, J. E., Ginocchio, C., Curtiss, R., III & Gyles, C. L. ( 1992; ). Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6, 271–279.[CrossRef]
    [Google Scholar]
  44. Shabarinath, S., Sanath, K. H., Khushiramani, R., Karunasagar, I. & Karunasagar, I. ( 2007; ). Detection and characterization of Salmonella associated with tropical seafood. Int J Food Microbiol 114, 227–233.[CrossRef]
    [Google Scholar]
  45. Steele-Mortimer, O., Meresse, S., Gorvel, J. P., Toh, B. H. & Finlay, B. B. ( 1999; ). Biogenesis of Salmonella Typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol 1, 33–49.[CrossRef]
    [Google Scholar]
  46. Szeto, J., Namolovan, A., Osborne, S. E., Coombes, B. K. & Brumell, J. H. ( 2009; ). Salmonella-containing vacuoles display centrifugal movement associated with cell-to-cell transfer in epithelial cells. Infect Immun 77, 996–1007.[CrossRef]
    [Google Scholar]
  47. Tavendale, A., Jardine, C. K., Old, D. C. & Duguid, J. P. ( 1983; ). Haemagglutinins and adhesion of Salmonella typhimurium to Hep2 and HeLa cells. J Med Microbiol 16, 371–380.[CrossRef]
    [Google Scholar]
  48. Wolz, C., Goerke, C., Landmann, R., Zimmerli, W. & Fluckiger, U. ( 2002; ). Transcription of clumping factor A in attached and unattached Staphylococcus aureus in vitro and during device-releted infection. Infect Immun 70, 2758–2762.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043596-0
Loading
/content/journal/micro/10.1099/mic.0.043596-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error