-
Volume 157,
Issue 1,
2011
Volume 157, Issue 1, 2011
- Mini-Review
-
-
-
Novel σ B regulation modules of Gram-positive bacteria involve the use of complex hybrid histidine kinases
More LessA common bacterial strategy to cope with stressful conditions is the activation of alternative sigma factors that control specific regulons enabling targeted responses. In the human pathogen Bacillus cereus, activation of the major stress-responsive sigma factor σ B is controlled by a signalling route that involves the multi-sensor hybrid histidine kinase RsbK. RsbK-type kinases are not restricted to the B. cereus group, but occur in a wide variety of other bacterial species, including members of the the low-GC Gram-positive genera Geobacillus and Paenibacillus as well as the high-GC actinobacteria. Genome context and protein sequence analyses of 118 RsbK homologues revealed extreme variability in N-terminal sensory as well as C-terminal regulatory domains and suggested that RsbK-type kinases are subject to complex fine-tuning systems, including sensitization and desensitization via methylation and demethylation within the helical domain preceding the H-box. The RsbK-mediated stress-responsive sigma factor activation mechanism that has evolved in B. cereus and the other species differs markedly from the extensively studied and highly conserved RsbRST-mediated σ B activation route found in Bacillus subtilis and other low-GC Gram-positive bacteria. Implications for future research on sigma factor control mechanisms are presented and current knowledge gaps are briefly discussed.
-
-
- Comment
-
- Cell And Molecular Biology Of Microbes
-
-
-
Identification of hydrogen peroxide production-related genes in Streptococcus sanguinis and their functional relationship with pyruvate oxidase
More LessHydrogen peroxide (H2O2), an important substance produced by many members of the genus Streptococcus, plays important roles in virulence and antagonism within a microbial community such as oral biofilms. The spxB gene, which encodes pyruvate oxidase, is involved in H2O2 production in many streptococcal species. However, knowledge about its regulation and relation with other genes putatively involved in the same pathway is limited. In this study, three genes – ackA, spxR and tpk – were identified as contributing to H2O2 production in Streptococcus sanguinis by screening mutants for opaque colony appearance. Mutations in all three genes resulted in significant decreases in H2O2 production, with 16–31 % of that of the wild-type. H2O2 production was restored in the complemented strains. Antagonism against Streptococcus mutans by these three S. sanguinis mutants was reduced, both on plates and in liquid cultures, indicating the critical roles of these three genes for conferring the competitive advantage of S. sanguinis. Analysis by qPCR indicated that the expression of spxB was decreased in the ackA and spxR mutants and significantly increased in the tpk mutant.
-
-
-
-
Regulation of the nitrate reductase operon narKGHJI by the cAMP-dependent regulator GlxR in Corynebacterium glutamicum
More LessThe Corynebacterium glutamicum anaerobic nitrate reductase operon narKGHJI is repressed by a transcriptional regulator, ArnR, under aerobic conditions. A consensus binding site of the cAMP receptor protein (CRP)-type regulator, GlxR, was recently found upstream of the ArnR binding site in the narK promoter region. Here we investigated the involvement of GlxR and cAMP in expression of the narKGHJI operon in vivo. Electrophoretic mobility shift assays showed that the putative GlxR binding motif in the narK promoter region is essential for the cAMP-dependent binding of GlxR. Promoter-reporter assays showed that mutation in the GlxR binding site resulted in significant reduction of narK promoter activity. Furthermore, a deletion mutant of the adenylate cyclase gene cyaB, which is involved in cAMP synthesis, exhibited a decrease in both narK promoter activity and nitrate reductase activity. These results demonstrated that C. glutamicum GlxR positively regulates narKGHJI expression in a cAMP-dependent manner.
-
-
-
Biochemical and transcription analysis of acetohydroxyacid synthase isoforms in Mycobacterium tuberculosis identifies these enzymes as potential targets for drug development
More LessAcetohydroxyacid synthase (AHAS) is a biosynthetic enzyme essential for de novo synthesis of branched-chain amino acids. The genome sequence of Mycobacterium tuberculosis revealed genes encoding four catalytic subunits, ilvB1 (Rv3003c), ilvB2 (Rv3470c), ilvG (Rv1820) and ilvX (Rv3509c), and one regulatory subunit, ilvN (Rv3002c), of AHAS. All these genes were found to be expressed in M. tuberculosis growing in vitro. Each AHAS subunit gene was cloned and expressed in Escherichia coli. AHAS activity of IlvB1 and IlvG was found in cell-free lysates and with recombinant purified proteins. Kinetic studies with purified IlvG revealed positive cooperativity towards substrate and cofactors. To understand the role of the catalytic subunits in the biology of M. tuberculosis, expression of AHAS genes was analysed in different physiological conditions. ilvB1, ilvB2 and ilvG were differentially expressed. The role of ilvB1 in persistence is known, but the upregulation of ilvB2 and ilvG in extended stationary phase, ex vivo, and in acid stress and hypoxic environments, suggests the relevance of AHAS enzymes in the metabolism and survival of M. tuberculosis by functioning as catabolic AHAS. These enzymes are therefore potential targets for drug development.
-
-
-
Downregulation of Rv0189c, encoding a dihydroxyacid dehydratase, affects growth of Mycobacterium tuberculosis in vitro and in mice
More LessDihydroxyacid dehydratase (DHAD), a key enzyme involved in branched-chain amino acid (BCAA) biosynthesis, catalyses the synthesis of 2-ketoacids from dihydroxyacids. In Mycobacterium tuberculosis, DHAD is encoded by gene Rv0189c, and it shares 40 % amino acid sequence identity and conserved motifs with DHAD of Escherichia coli encoded by ilvD. In this study, Rv0189c was overexpressed in E. coli and the resultant protein was characterized as a homodimer (∼155 kDa). Functional characterization of Rv0189c was established by biochemical testing and by genetic complementation of an intron-disrupted ilvD-auxotrophic mutant of E. coli to prototrophy. Growth of M. tuberculosis, E. coli BL21(DE3) and recombinant E. coli BL21(DE3) ΔilvD carrying Rv0189c was inhibited by transient nitric oxide (NO) exposure in minimal medium but growth was restored if the medium was supplemented with BCAA (isoleucine, leucine and valine). This suggested that inactivation of Rv0189c by NO probably inhibited bacterial growth. The role of Rv0189c in M. tuberculosis was elucidated by antisense and sense RNA constructs. Growth of M. tuberculosis transformed with a plasmid encoding antisense mRNA was markedly poor in the lungs of infected mice and in Middlebrook 7H9 broth compared to that of sense and vector-alone transformants, but growth was normal when the medium was supplemented with BCAA. Upregulation of Rv0189c was observed during the early exponential phase of growth, under acid stress and ex vivo, suggesting that Rv0189c has a role in the survival of M. tuberculosis during normal and stress conditions. It may be concluded that the DHAD encoded by Rv0189c is essential for the survival of M. tuberculosis and could be a potential drug/vaccine target, as it is absent in mammals.
-
-
-
The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate
Metarhizium anisopliae and Beauveria bassiana are ubiquitous insect pathogens and possible plant symbionts, as some strains are endophytic or colonize the rhizosphere. We evaluated 11 strains of M. anisopliae and B. bassiana, and two soil saprophytes (the non-rhizospheric Aspergillus niger and the rhizosphere-competent Trichoderma harzianum) for their ability to germinate in bean root exudates (REs). Our results showed that some generalist strains of M. anisopliae were as good at germinating in RE as T. harzianum, although germination rates of the specialized acridid pathogen Metarhizium acridum and the B. bassiana strains were significantly lower. At RE concentrations of <1 mg ml−1, M. anisopliae strain ARSEF 2575 showed higher germination rates than T. harzianum. Microarrays showed that strain 2575 upregulated 29 genes over a 12 h period in RE. A similar number of genes (21) were downregulated. Upregulated genes were involved in carbohydrate metabolism, lipid metabolism, cofactors and vitamins, energy metabolism, proteolysis, extracellular matrix/cell wall proteins, transport proteins, DNA synthesis, the sexual cycle and stress response. However, 41.3 % of the upregulated genes were hypothetical or orphan sequences, indicating that many previously uncharacterized genes have functions related to saprophytic survival. Genes upregulated in response to RE included the subtilisin Pr1A, which is also involved in pathogenicity to insects. However, the upregulated Mad2 adhesin specifically mediates adhesion to plant surfaces, demonstrating that M. anisopliae has genes for rhizosphere competence that are induced by RE.
-
-
-
Site-specific methylation in Bacillus subtilis chemotaxis: effect of covalent modifications to the chemotaxis receptor McpB
More LessThe Bacillus subtilis chemotaxis pathway employs a receptor methylation system that functions differently from the one in the canonical Escherichia coli pathway. Previously, we hypothesized that B. subtilis employs a site-specific methylation system for adaptation where methyl groups are added and removed at different sites. This study investigated how covalent modifications to the adaptation region of the chemotaxis receptor McpB altered its apparent affinity for its cognate ligand, asparagine, and also its ability to activate the CheA kinase. This receptor has three closely spaced adaptation sites located at residues Gln371, Glu630 and Glu637. We found that amidation, a putative methylation mimic, of site 371 increased the receptor's apparent affinity for asparagine and its ability to activate the CheA kinase. Conversely, amidation of sites 630 and 637 reduced the receptor's ability to activate the kinase but did not affect the apparent affinity for asparagine, suggesting that activity and sensitivity are independently controlled in B. subtilis. We also examined how electrostatic interactions may underlie this behaviour, using homology models. These findings further our understanding of the site-specific methylation system in B. subtilis by demonstrating how the modification of specific sites can have varying effects on receptor function.
-
-
-
Multiple layers of control govern expression of the Escherichia coli ibpAB heat-shock operon
More LessThe Escherichia coli ibpAB operon encodes two small heat-shock proteins, the inclusion-body-binding proteins IbpA and IbpB. Here, we report that expression of ibpAB is a complex process involving at least four different layers of control, namely transcriptional control, RNA processing, translation control and protein stability. As a typical member of the heat-shock regulon, transcription of the ibpAB operon is controlled by the alternative sigma factor σ 32 (RpoH). Heat-induced transcription of the bicistronic operon is followed by RNase E-mediated processing events, resulting in monocistronic ibpA and ibpB transcripts and short 3′-terminal ibpB fragments. Translation of ibpA is controlled by an RNA thermometer in its 5′ untranslated region, forming a secondary structure that blocks entry of the ribosome at low temperatures. A similar structure upstream of ibpB is functional in vitro but not in vivo, suggesting downregulation of ibpB expression in the presence of IbpA. The recently reported degradation of IbpA and IbpB by the Lon protease and differential regulation of IbpA and IbpB levels in E. coli are discussed.
-
-
-
Positive transcriptional control of the pyridoxal phosphate biosynthesis genes pdxST by the MocR-type regulator PdxR of Corynebacterium glutamicum ATCC 13032
More LessThe pdxR (cg0897) gene of Corynebacterium glutamicum ATCC 13032 encodes a regulatory protein belonging to the MocR subfamily of GntR-type transcription regulators and consisting of an amino-terminal winged helix–turn–helix DNA-binding domain and a carboxy-terminal aminotransferase-like domain. A defined deletion in the pdxR gene resulted in the decreased expression of the divergently orientated pdxST genes coding for the subunits of pyridoxal 5′-phosphate synthase. The pdxST mutant C. glutamicum NJ0898 and the pdxR mutant C. glutamicum AMH17 showed vitamin B6 auxotrophy that was restored by supplementing the growth medium with either pyridoxal, pyridoxal 5′-phosphate or pyridoxamine. The genetic organization of the 89 bp pdxR–pdxST intergenic region was elucidated by mapping the 5′ ends of the respective transcripts, followed by detection of typical promoter sequences. Bioinformatic pattern searches and comparative genomics revealed three DNA motifs with the consensus sequence AAAGTGGW(−/T)CTA, overlapping the deduced promoter sequences and serving as candidate DNA-binding sites for PdxR. DNA band shift assays with the purified PdxR protein demonstrated the specific binding of the transcription regulator to double-stranded 40-mer sequences containing the detected motifs, thereby confirming the direct regulatory role of PdxR in activating the expression of the pdxST genes.
-
- Environmental And Evolutionary Microbiology
-
-
-
Growth of Pseudomonas putida F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase
More LessPseudomonas putida F1 cannot grow on styrene despite being able to degrade it through the toluene degradation (tod) pathway. Previous work had suggested that this was because TodF, the meta-fission product (MFP) hydrolase, was unable to metabolize the styrene MFP 2-hydroxy-6-vinylhexa-2,4-dienoate. Here we demonstrate via kinetic and growth analyses that the substrate specificity of TodF is not the limiting factor preventing F1 from growing on styrene. Rather, we found that the metabolite 3-vinylcatechol accumulated during styrene metabolism and that micromolar concentrations of this intermediate inactivated TodE, the catechol-2,3-dioxygenase (C23O) responsible for its cleavage. Analysis of cells growing on styrene suggested that inactivation of TodE and the subsequent accumulation of 3-vinylcatechol resulted in toxicity and cell death. We found that simply overexpressing TodE on a plasmid (pTodE) was all that was necessary to allow F1 to grow on styrene. Similar results were also obtained by expressing a related C23O, DmpB from Pseudomonas sp. CF600, in tandem with its plant-like ferredoxin, DmpQ (pDmpQB). Further analysis revealed that the ability of F1 (pDmpQB) and F1 (pTodE) to grow on styrene correlated with increased C23O activity as well as resistance of the enzyme to 3-vinylcatechol-mediated inactivation. Although TodE inactivation by 3-halocatechols has been studied before, to our knowledge, this is the first published report demonstrating inactivation by a 3-vinylcatechol. Given the ubiquity of catechol intermediates in aromatic hydrocarbon metabolism, our results further demonstrate the importance of C23O inactivation as a determinant of growth substrate specificity.
-
-
-
-
Citrus limonoids interfere with Vibrio harveyi cell–cell signalling and biofilm formation by modulating the response regulator LuxO
More LessCitrus limonoids are unique secondary metabolites, characterized by a triterpenoid skeleton with a furan ring. Studies have demonstrated beneficial health properties of limonoids. In addition, certain citrus limonoids play a role in plant defence against insect pests. In the present study, five limonoids were purified from sour orange and evaluated for their ability to inhibit cell–cell signalling. The purified limonoids were tested for their ability to interfere with cell–cell signalling and biofilm formation in Vibrio harveyi. Isolimonic acid, deacetylnomilinic acid glucoside and ichangin demonstrated significant inhibition of autoinducer-mediated cell–cell signalling and biofilm formation. Furthermore, isolimonic acid and ichangin treatment resulted in induced expression of the response regulator gene luxO. In addition, luxR promoter activity was not affected by isolimonic acid or ichangin. Therefore, the ability of isolimonic acid and ichangin to interfere with cell–cell signalling and biofilm formation seems to stem from the modulation of luxO expression. The results suggest that isolimonic acid and ichangin are potent modulators of bacterial cell–cell signalling.
-
-
-
Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways
More LessAutotrophic acidophilic iron- and sulfur-oxidizing bacteria of the genus Acidithiobacillus constitute a heterogeneous taxon encompassing a high degree of diversity at the phylogenetic and genetic levels, though currently only two species are recognized (Acidithiobacillus ferrooxidans and Acidithiobacillus ferrivorans). One of the major functional disparities concerns the biochemical mechanisms of iron and sulfur oxidation, with discrepancies reported in the literature concerning the genes and proteins involved in these processes. These include two types of high-potential iron–sulfur proteins (HiPIPs): (i) Iro, which has been described as the iron oxidase; and (ii) Hip, which has been proposed to be involved in the electron transfer between sulfur compounds and oxygen. In addition, two rusticyanins have been described: (i) rusticyanin A, encoded by the rusA gene and belonging to the well-characterized rus operon, which plays a central role in the iron respiratory chain; and (ii) rusticyanin B, a protein to which no function has yet been ascribed. Data from a multilocus sequence analysis of 21 strains of Fe(II)-oxidizing acidithiobacilli obtained from public and private collections using five phylogenetic markers showed that these strains could be divided into four monophyletic groups. These divisions correlated not only with levels of genomic DNA hybridization and phenotypic differences among the strains, but also with the types of rusticyanin and HiPIPs that they harbour. Taken together, the data indicate that Fe(II)-oxidizing acidithiobacilli comprise at least four distinct taxa, all of which are able to oxidize both ferrous iron and sulfur, and suggest that different iron oxidation pathways have evolved in these closely related bacteria.
-
-
-
Evidence for a common gene pool and frequent recombinational exchange of the tbpBA operon in Mannheimia haemolytica, Mannheimia glucosida and Bibersteinia trehalosi
More LessThe tbpBA operon was sequenced in 42 representative isolates of Mannheimia haemolytica (32), Mannheimia glucosida (6) and Bibersteinia trehalosi (4). A total of 27 tbpB and 20 tbpA alleles were identified whilst the tbpBA operon was represented by 28 unique alleles that could be assigned to seven classes. There were 1566 (34.8 % variation) polymorphic nucleotide sites and 482 (32.1 % variation) variable inferred amino acid positions among the 42 tbpBA sequences. The tbpBA operons of serotype A2 M. haemolytica isolates are, with one exception, substantially more diverse than those of the other M. haemolytica serotypes and most likely have a different ancestral origin. The tbpBA phylogeny has been severely disrupted by numerous small- and large-scale intragenic recombination events. In addition, assortative (entire gene) recombination events, involving either the entire tbpBA operon or the individual tbpB and tbpA genes, have played a major role in shaping tbpBA structure and it's distribution in the three species. Our findings indicate that a common gene pool exists for tbpBA in M. haemolytica, M. glucosida and B. trehalosi. In particular, B. trehalosi, M. glucosida and ovine M. haemolytica isolates share a large portion of the tbpA gene, and this probably reflects selection for a conserved TbpA protein that provides effective iron uptake in sheep. Bovine and ovine serotype A2 lineages have very different tbpBA alleles. Bovine-like tbpBA alleles have been partially, or completely, replaced by ovine-like tbpBA alleles in ovine serotype A2 isolates, suggesting that different transferrin receptors are required by serotype A2 isolates for optimum iron uptake in cattle and sheep. Conversely, the tbpBA alleles of bovine-pathogenic serotype A1 and A6 isolates are very similar to those of closely related ovine isolates, suggesting a recent and common evolutionary origin.
-
- Genes And Genomes
-
-
-
Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH
The mucosal layers colonized by the pathogenic fungus Candida albicans differ widely in ambient pH. Because the properties and functions of wall proteins are probably pH dependent, we hypothesized that C. albicans adapts its wall proteome to the external pH. We developed an in vitro system that mimics colonization of mucosal surfaces by growing biomats at pH 7 and 4 on semi-solid agarose containing mucin as the sole nitrogen source. The biomats expanded radially for at least 8 days at a rate of ∼30 μm h−1. At pH 7, hyphal growth predominated and growth was invasive, whereas at pH 4 only yeast and pseudohyphal cells were present and growth was noninvasive. Both qualitative mass spectrometric analysis of the wall proteome by tandem mass spectrometry and relative quantification of individual wall proteins (pH 7/pH 4), using Fourier transform mass spectrometry (FT-MS) and a reference mixture of 15N-labelled yeast and hyphal walls, identified similar sets of >20 covalently linked wall proteins. The adhesion proteins Als1 and Als3, Hyr1, the transglucosidase Phr1, the detoxification enzyme Sod5 and the mammalian transglutaminase substrate Hwp1 (immunological detection) were only present at pH 7, whereas at pH 4 the level of the transglucosidase Phr2 was >35-fold higher than at pH 7. Sixteen out of the 22 proteins identified by FT-MS showed a greater than twofold change. These results demonstrate that ambient pH strongly affects the wall proteome of C. albicans, show that our quantitative approach can give detailed insights into the dynamics of the wall proteome, and point to potential vaccine targets.
-
-
-
-
Metabolomics as a tool for target identification in strain improvement: the influence of phenotype definition
More LessFor the optimization of microbial production processes, the choice of the quantitative phenotype to be optimized is crucial. For instance, for the optimization of product formation, either product concentration or productivity can be pursued, potentially resulting in different targets for strain improvement. The choice of a quantitative phenotype is highly relevant for classical improvement approaches, and even more so for modern systems biology approaches. In this study, the information content of a metabolomics dataset was determined with respect to different quantitative phenotypes related to the formation of specific products. To this end, the production of two industrially relevant products by Aspergillus niger was evaluated: (i) the enzyme glucoamylase, and (ii) the more complex product group of secreted proteases, consisting of multiple enzymes. For both products, six quantitative phenotypes associated with activity and productivity were defined, also taking into account different time points of sampling during the fermentation. Both linear and nonlinear relationships between the metabolome data and the different quantitative phenotypes were considered. The multivariate data analysis tool partial least-squares (PLS) was used to evaluate the information content of the datasets for all the different quantitative phenotypes defined. Depending on the product studied, different quantitative phenotypes were found to have the highest information content in specific metabolomics datasets. A detailed analysis of the metabolites that showed strong correlation with these quantitative phenotypes revealed that various sugar derivatives correlated with glucoamylase activity. For the reduction of protease activity, mainly as-yet-unidentified compounds correlated.
-
- Microbial Pathogenicity
-
-
-
Presence of Salmonella pathogenicity island 2 genes in seafood-associated Salmonella serovars and the role of the sseC gene in survival of Salmonella enterica serovar Weltevreden in epithelial cells
The type III secretion system encoded by the Salmonella pathogenicity island 2 (SPI-2) has a central role in the pathogenesis of systemic infections by Salmonella. Sixteen genes (ssaU, ssaB, ssaR, ssaQ, ssaO, ssaS, ssaP, ssaT, sscB, sseF, sseG, sseE, sseD, sseC, ssaD and sscA) of SPI-2 were targeted for PCR amplification in 57 seafood-associated serovars of Salmonella. The sseC gene of SPI-2 was found to be absent in two isolates of Salmonella enterica serovar Weltevreden, SW13 and SW39. Absence of sseC was confirmed by sequencing using flanking primers. SW13 had only 66 bp sequence of the sseC gene and SW39 had 58 bp sequence of this gene. A clinical isolate, S. Weltevreden – SW3, 10 : r : z6 – was used to construct a deletion mutant for the sseC gene. Significant reduction in the survival of SW3, 10 : r : z6 ΔsseC and natural mutants SW13 and SW39 in HeLa cells suggests that sseC has a crucial role in the intracellular survival of S. Weltevreden. Expression of sseC was upregulated during the intracellular phase of both S. enterica serovar Typhimurium and clinical isolate S. Weltevreden SW3, 10 : r : z6, suggesting a crucial role for this gene in the survival of S. Weltevreden inside host cells.
-
-
-
-
Colonization of healthy children by Moraxella catarrhalis is characterized by genotype heterogeneity, virulence gene diversity and co-colonization with Haemophilus influenzae
The colonization dynamics of Moraxella catarrhalis were studied in a population comprising 1079 healthy children living in Rotterdam, The Netherlands (the Generation R Focus cohort). A total of 2751 nasal swabs were obtained during four clinic visits timed to take place at 1.5, 6, 14 and 24 months of age, yielding a total of 709 M. catarrhalis and 621 Haemophilus influenzae isolates. Between January 2004 and December 2006, approximate but regular 6-monthly cycles of colonization were observed, with peak colonization incidences occurring in the autumn/winter for M. catarrhalis, and winter/spring for H. influenzae. Co-colonization was significantly more likely than single-species colonization with either M. catarrhalis or H. influenzae, with genotypic analysis revealing no clonality for co-colonizing or single colonizers of either bacterial species. This finding is especially relevant considering the recent discovery of the importance of H. influenzae–M. catarrhalis quorum sensing in biofilm formation and host clearance. Bacterial genotype heterogeneity was maintained over the 3-year period of the study, even within this relatively localized geographical region, and there was no association of genotypes with either season or year of isolation. Furthermore, chronological and genotypic diversity in three immunologically important M. catarrhalis virulence genes (uspA1, uspA2 and hag/mid) was also observed. This study indicates that genotypic variation is a key factor contributing to the success of M. catarrhalis colonization of healthy children in the first years of life. Furthermore, variation in immunologically relevant virulence genes within colonizing populations, and even within genotypically identical M. catarrhalis isolates, may be a result of immune evasion by this pathogen. Finally, the factors facilitating M. catarrhalis and H. influenzae co-colonization need to be further investigated.
-
-
-
Identification of Vibrio campbellii isolated from diseased farm-shrimps from south India and establishment of its pathogenic potential in an Artemia model
Shrimp diseases are frequently reported to be caused by closely related vibrios, and in many cases they are tentatively but inaccurately identified as Vibrio harveyi and related vibrios. In the present study, 28 biochemically identified V. harveyi-related strains isolated from diseased shrimps were randomly selected for further characterization by molecular tools. Twenty-six strains were identified as Vibrio campbellii and two as V. harveyi by sequence analysis of 16S rRNA and uridylate kinase genes. Haemolysin-gene-based species-specific multiplex PCR also confirmed these results. Experimental challenge studies using Artemia as a model showed that eight isolates were highly pathogenic, three were moderately pathogenic and the remaining 17 were non-pathogenic. Ribotyping with BglI clearly distinguished V. campbellii from V. harveyi, but it failed to separate pathogenic and non-pathogenic clusters. Artemia nauplii challenged with a fluorescently labelled highly pathogenic strain (IPEY54) showed patches in the digestive tract. However, no patches were observed for a non-pathogenic strain (IPEY41). Direct bacterial counts also supported colonization potential for the highly pathogenic strain. To our knowledge, this is the first report on the isolation and accurate identification of large numbers of V. campbellii associated with shrimp disease in aquacultural farms. V. campbellii has long been considered to be non-pathogenic and classified with V. harveyi-related bacteria. However, we show that this species may be an emerging aquaculture pathogen. This study will help to formulate suitable strategies to combat this newly identified pathogen.
-
-
-
Evolution of the capsular gene locus of Streptococcus pneumoniae serogroup 6
Streptococcus pneumoniae expressing serogroup 6 capsules frequently causes pneumococcal infections and the evolutionary origins of the serogroup 6 strains have been extensively studied. However, these studies were performed when serogroup 6 had only two known members (serotypes 6A and 6B) and before the two new members (serotypes 6C and 6D) expressing wciN β were found. We have therefore reinvestigated the evolutionary origins of serogroup 6 by examining the profiles of the capsule gene loci and the multilocus sequence types (MLSTs) of many serogroup 6 isolates from several continents. We confirmed that there are two classes of cps locus sequences for serogroup 6 isolates. In our study, class 2 cps sequences were limited to a few serotype 6B isolates. Neighbour-joining analysis of cps sequence profiles showed a distinct clade for 6C and moderately distinct clades for class 1 6A and 6B sequences. The serotype 6D cps profile was found within the class 1 6B clade, suggesting that it was created by recombination between 6C and 6B cps loci. Interestingly, all 6C isolates also had a unique wzy allele with a 6 bp deletion. This suggests that serotype switching to 6C involves the transfer of a large (>4 kb) gene segment that includes both the wciN β allele and the ‘short’ wzy allele. The MLST studies of serotype 6C isolates suggest that the 6C cps locus is incorporated into many different pneumococcal genomic backgrounds but that, interestingly, 6C cps may have preferentially entered strains of the same genomic backgrounds as those of serotype 6A.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
