1887

Abstract

invade non-phagocytic cells by inducing massive actin rearrangements, resulting in membrane ruffle formation and phagocytosis of the bacteria. This process is mediated by a cohort of effector proteins translocated into the host cell by type III secretion system 1, which is encoded by genes in the pathogenicity island (SPI) 1 regulon. This network is precisely regulated and must be induced outside of host cells. invasive are prepared by growth in synthetic media although the details vary. Here, we show that culture conditions affect the frequency, and therefore invasion efficiency, of SPI1-induced bacteria and also can affect the ability of to adapt to its intracellular niche following invasion. Aerobically grown late-exponential-phase bacteria were more invasive and this was associated with a greater frequency of SPI1-induced, motile bacteria, as revealed by single-cell analysis of gene expression. Culture conditions also affected the ability of to adapt to the intracellular environment, since they caused marked differences in intracellular replication. These findings show that induction of SPI1 under different pre-invasion growth conditions can affect the ability of to interact with eukaryotic host cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032896-0
2010-04-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1120.html?itemId=/content/journal/micro/10.1099/mic.0.032896-0&mimeType=html&fmt=ahah

References

  1. Andersen J. B., Sternberg C., Poulsen L. K., Bjorn S. P., Givskov M., Molin S.. 1998; New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol64:2240–2246
    [Google Scholar]
  2. Bajaj V., Lucas R. L., Hwang C., Lee C. A.. 1996; Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol22:703–714
    [Google Scholar]
  3. Baxter M. A., Jones B. D.. 2005; The fimYZ genes regulate Salmonella enterica Serovar Typhimurium invasion in addition to type 1 fimbrial expression and bacterial motility. Infect Immun73:1377–1385
    [Google Scholar]
  4. Behlau I., Miller S. I.. 1993; A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol175:4475–4484
    [Google Scholar]
  5. Bishop A., House D., Perkins T., Baker S., Kingsley R. A., Dougan G.. 2008; Interaction of Salmonella enterica serovar Typhi with cultured epithelial cells: roles of surface structures in adhesion and invasion. Microbiology154:1914–1926
    [Google Scholar]
  6. Boddicker J. D., Jones B. D.. 2004; Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect Immun72:2002–2013
    [Google Scholar]
  7. Bumann D.. 2002; Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol Microbiol43:1269–1283
    [Google Scholar]
  8. Canales R. D., Luo Y., Willey J. C., Austermiller B., Barbacioru C. C., Boysen C., Hunkapiller K., Jensen R. V., Knight C. R.. other authors 2006; Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol24:1115–1122
    [Google Scholar]
  9. Clark L., Martinez-Argudo I., Humphrey T. J., Jepson M. A.. 2009; GFP plasmid-induced defects in Salmonella invasion depend on plasmid architecture, not protein expression. Microbiology155:461–467
    [Google Scholar]
  10. Croinin T. O., Dorman C. J.. 2007; Expression of the Fis protein is sustained in late-exponential- and stationary-phase cultures of Salmonella enterica serovar Typhimurium grown in the absence of aeration. Mol Microbiol66:237–251
    [Google Scholar]
  11. Drecktrah D., Knodler L. A., Galbraith K., Steele-Mortimer O.. 2005; The Salmonella SPI1 effector SopB stimulates nitric oxide production long after invasion. Cell Microbiol7:105–113
    [Google Scholar]
  12. Drecktrah D., Knodler L. A., Ireland R., Steele-Mortimer O.. 2006; The mechanism of Salmonella entry determines the vacuolar environment and intracellular gene expression. Traffic7:39–51
    [Google Scholar]
  13. Ellermeier J. R., Slauch J. M.. 2007; Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol10:24–29
    [Google Scholar]
  14. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C.. 2003; Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol47:103–118
    [Google Scholar]
  15. Flagella M., Bui S., Zheng Z., Nguyen C. T., Zhang A., Pastor L., Ma Y., Yang W., Crawford K. L.. other authors 2006; A multiplex branched DNA assay for parallel quantitative gene expression profiling. Anal Biochem352:50–60
    [Google Scholar]
  16. Hansen-Wester I., Hensel M.. 2001; Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect3:549–559
    [Google Scholar]
  17. Hautefort I., Proenca M. J., Hinton J. C.. 2003; Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl Environ Microbiol69:7480–7491
    [Google Scholar]
  18. Hautefort I., Thompson A., Eriksson-Ygberg S., Parker M. L., Lucchini S., Danino V., Bongaerts R. J., Ahmad N., Rhen M., Hinton J. C.. 2008; During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol10:958–984
    [Google Scholar]
  19. Hernandez L. D., Hueffer K., Wenk M. R., Galan J. E.. 2004; Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science304:1805–1807
    [Google Scholar]
  20. Hoiseth S. K., Stocker B. A.. 1981; Aromatic dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature291:238–239
    [Google Scholar]
  21. Ibarra J. A., Steele-Mortimer O.. 2009; Salmonella – the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol11:1579–1586
    [Google Scholar]
  22. Jones B. D., Falkow S.. 1994; Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun62:3745–3752
    [Google Scholar]
  23. Kage H., Takaya A., Ohya M., Yamamoto T.. 2008; Coordinated regulation of expression of Salmonella pathogenicity island 1 and flagellar type III secretion systems by ATP-dependent ClpXP protease. J Bacteriol190:2470–2478
    [Google Scholar]
  24. Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama T., Kawashima S., Okuda S.. other authors 2008; KEGG for linking genomes to life and the environment. Nucleic Acids Res36:D480–D484
    [Google Scholar]
  25. Khoramian-Falsafi T., Harayama S., Kutsukake K., Pechere J. C.. 1990; Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells. Microb Pathog9:47–53
    [Google Scholar]
  26. Kim W., Surette M. G.. 2003; Swarming populations of Salmonella represent a unique physiological state coupled to multiple mechanisms of antibiotic resistance. Biol Proced Online5:189–196
    [Google Scholar]
  27. Knodler L. A., Bestor A., Ma C., Hansen-Wester I., Hensel M., Vallance B. A., Steele-Mortimer O.. 2005; Cloning vectors and fluorescent proteins can significantly inhibit Salmonella enterica virulence in both epithelial cells and macrophages: implications for bacterial pathogenesis studies. Infect Immun73:7027–7031
    [Google Scholar]
  28. Knodler L. A., Winfree S., Drecktrah D., Ireland R., Steele-Mortimer O.. 2009; Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane. Cell Microbiol11:1652–1670
    [Google Scholar]
  29. Lee C. A., Falkow S.. 1990; The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci U S A87:4304–4308
    [Google Scholar]
  30. Lober S., Jackel D., Kaiser N., Hensel M.. 2006; Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. Int J Med Microbiol296:435–447
    [Google Scholar]
  31. Mangan M. W., Lucchini S., Danino V., Croinin T. O., Hinton J. C., Dorman C. J.. 2006; The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol59:1831–1847
    [Google Scholar]
  32. Marcus S. L., Brumell J. H., Pfeifer C. G., Finlay B. B.. 2000; Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect2:145–156
    [Google Scholar]
  33. Mayer M. P.. 1995; A new set of useful cloning and expression vectors derived from pBlueScript. Gene163:41–46
    [Google Scholar]
  34. McGhie E. J., Brawn L. C., Hume P. J., Humphreys D., Koronakis V.. 2009; Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol12:117–124
    [Google Scholar]
  35. McQuiston J. R., Fields P. I., Tauxe R. V., Logsdon J. M. Jr. 2008; Do Salmonella carry spare tyres?. Trends Microbiol16:142–148
    [Google Scholar]
  36. Miao E. A., Alpuche-Aranda C. M., Dors M., Clark A. E., Bader M. W., Miller S. I., Aderem A.. 2006; Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1 β via Ipaf. Nat Immunol7:569–575
    [Google Scholar]
  37. Mootha V. K., Lindgren C. M., Eriksson K. F., Subramanian A., Sihag S., Lehar J., Puigserver P., Carlsson E., Ridderstrale M.. other authors 2003; PGC-1 α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet34:267–273
    [Google Scholar]
  38. Passerat J., Got P., Dukan S., Monfort P.. 2009; Respective roles of culturable and viable-but-nonculturable cells in the heterogeneity of Salmonella enterica serovar typhimurium invasiveness. Appl Environ Microbiol75:5179–5185
    [Google Scholar]
  39. Patel J. C., Galan J. E.. 2005; Manipulation of the host actin cytoskeleton by Salmonella – all in the name of entry. Curr Opin Microbiol8:10–15
    [Google Scholar]
  40. Patel J. C., Hueffer K., Lam T. T., Galan J. E.. 2009; Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell137:283–294
    [Google Scholar]
  41. Saini S., Brown J. D., Aldridge P. D., Rao C. V.. 2008; FliZ is a posttranslational activator of FlhD4C2-dependent flagellar gene expression. J Bacteriol190:4979–4988
    [Google Scholar]
  42. Schiemann D. A., Shope S. R.. 1991; Anaerobic growth of Salmonella typhimurium results in increased uptake by Henle 407 epithelial and mouse peritoneal cells in vitro and repression of a major outer membrane protein. Infect Immun59:437–440
    [Google Scholar]
  43. Song M., Kim H. J., Kim E. Y., Shin M., Lee H. C., Hong Y., Rhee J. H., Yoon H., Ryu S.. other authors 2004; ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J Biol Chem279:34183–34190
    [Google Scholar]
  44. Steele-Mortimer O.. 2008a; Infection of epithelial cells with Salmonella enterica. Methods Mol Biol431:201–212
    [Google Scholar]
  45. Steele-Mortimer O.. 2008b; The Salmonella-containing vacuole –moving with the times. Curr Opin Microbiol11:38–45
    [Google Scholar]
  46. Steele-Mortimer O., Meresse S., Gorvel J. P., Toh B. H., Finlay B. B.. 1999; Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol1:33–49
    [Google Scholar]
  47. Steele-Mortimer O., Knodler L. A., Marcus S. L., Scheid M. P., Goh B., Pfeifer C. G., Duronio V., Finlay B. B.. 2000; Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector sigD. J Biol Chem275:37718–37724
    [Google Scholar]
  48. Steele-Mortimer O., Brumell J. H., Knodler L. A., Meresse S., Lopez A., Finlay B. B.. 2002; The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol4:43–54
    [Google Scholar]
  49. Subramanian A., Tamayo P., Mootha V. K., Mukherjee S., Ebert B. L., Gillette M. A., Paulovich A., Pomeroy S. L., Golub T. R.. other authors 2005; Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A102:15545–15550
    [Google Scholar]
  50. Subramanian A., Kuehn H., Gould J., Tamayo P., Mesirov J. P.. 2007; GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics23:3251–3253
    [Google Scholar]
  51. Temme K., Salis H., Tullman-Ercek D., Levskaya A., Hong S. H., Voigt C. A.. 2008; Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. J Mol Biol377:47–61
    [Google Scholar]
  52. Teplitski M., Goodier R. I., Ahmer B. M.. 2003; Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J Bacteriol185:7257–7265
    [Google Scholar]
  53. Thijs I. M., De Keersmaecker S. C., Fadda A., Engelen K., Zhao H., McClelland M., Marchal K., Vanderleyden J.. 2007; Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol189:4587–4596
    [Google Scholar]
  54. Tintle N. L., Best A. A., DeJongh M., Van Bruggen D., Heffron F., Porwollik S., Taylor R. C.. 2008; Gene set analyses for interpreting microarray experiments on prokaryotic organisms. BMC Bioinformatics9:469
    [Google Scholar]
  55. Tusher V. G., Tibshirani R., Chu G.. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A98:5116–5121
    [Google Scholar]
  56. Valdivia R. H., Falkow S.. 1996; Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol22:367–378
    [Google Scholar]
  57. van Asten F. J., Hendriks H. G., Koninkx J. F., van Dijk J. E.. 2004; Flagella-mediated bacterial motility accelerates but is not required for Salmonella serotype Enteritidis invasion of differentiated Caco-2 cells. Int J Med Microbiol294:395–399
    [Google Scholar]
  58. van der Velden A. W., Lindgren S. W., Worley M. J., Heffron F.. 2000; Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium. Infect Immun68:5702–5709
    [Google Scholar]
  59. Virtaneva K., Porcella S. F., Graham M. R., Ireland R. M., Johnson C. A., Ricklefs S. M., Babar I., Parkins L. D., Romero R. A.. other authors 2005; Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. Proc Natl Acad Sci U S A102:9014–9019
    [Google Scholar]
  60. Weening E. H., Barker J. D., Laarakker M. C., Humphries A. D., Tsolis R. M., Baumler A. J.. 2005; The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun73:3358–3366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032896-0
Loading
/content/journal/micro/10.1099/mic.0.032896-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error