-
Volume 156,
Issue 4,
2010
Volume 156, Issue 4, 2010
- Comment
-
- Cell And Molecular Biology Of Microbes
-
-
-
Mitochondrial processing peptidase activity is controlled by the processing of α-MPP during development in Dictyostelium discoideum
More LessWe investigated the expression of the α subunit of the Dictyostelium mitochondrial processing peptidase (Ddα-MPP) during development. Ddα-MPP mRNA is expressed at the highest levels in vegetatively growing cells and during early development, and is markedly downregulated after 10 h of development. The Ddα-MPP protein is expressed as two forms, designated α-MPPH and α-MPPL, throughout the Dictyostelium life cycle. The larger form, α-MPPH, is cleaved to produce the functional α-MPPL form. We were not able to isolate mutants in which the α-mpp gene had been disrupted. Instead, an antisense transformant, αA2, expressing α-MPP at a lower level than the wild-type AX-3 was isolated to examine the function of the α-MPP protein. Development of the αA2 strain was normal until the slug formation stage, but the slug stage was prolonged to ∼24 h. In this prolonged slug stage, only α-MPPH was present, and α-MPPL protein and MPP activity were not detected. After 28 h, α-MPPL and MPP activity reappeared, and normal fruiting bodies were formed after a delay of approximately 8 h compared with normal development. These results indicate that MPP activity is controlled by the processing of α-MPPH to α-MPPL during development in Dictyostelium.
-
-
-
-
Expression of, and in vivo stressosome formation by, single members of the RsbR protein family in Bacillus subtilis
More LessThe Bacillus subtilis stressosome is a 1.8 MDa complex that is the focal point for activating the bacterium's general response to physical stress. In vitro studies demonstrated that the stressosome's core element can be formed from one or more of a family of paralogous proteins (RsbRA, -RB, -RC and -RD) onto which the system's activator protein (RsbT) and its principal inhibitor (RsbS) are bound. The RsbR components of the stressosome are envisioned to be the initial receptors of stress signalling with the stressosome structure itself serving as a device to integrate multiple stress signals for a coordinated response. In the current work, we examine several of the in vivo characteristics of the RsbR family members, including their expression and ability to form stressosomes to regulate σ B. Translational fusions of lacZ to each rsbR paralogue revealed that rsbRA, -RB and -RC are expressed at similar levels, which remain relatively constant during growth, ethanol stress and entry into stationary phase. rsbRD, in contrast, is expressed at a level that is only slightly above background during growth, but is induced to 30 % of the rsbRA expression level following ethanol stress. Velocity sedimentation analyses of B. subtilis extracts from strains expressing single rsbR paralogues demonstrated that each incorporates RsbS into fast-sedimenting complexes. However, consistent with rsbRD's lower expression, the RsbRD-dependent RsbS complexes were present at only 20 % of the level of the complexes seen in a wild-type strain. The lower stressosome level in the RsbRD strain is still able to hold RsbT's activity in check, implying that the RsbR/S component of stressosomes is normally in excess for the control of RsbT. Consistent with such a notion, reporter gene and Western blot assays demonstrate that although RsbT is synthesized at the same rate as RsbRA and RsbS, RsbT's ultimate level in growing B. subtilis is only 10 % that of RsbRA. Apparently, RsbT's inherent structure and/or its passage between the stressosome and its activation target compromises its persistence.
-
-
-
Cloning and expression analysis of the duplicated genes for carbon monoxide dehydrogenase of Mycobacterium sp. strain JC1 DSM 3803
Carbon monoxide dehydrogenase (CO-DH) is an enzyme catalysing the oxidation of CO to carbon dioxide in Mycobacterium sp. strain JC1 DSM 3803. Cloning of the genes encoding CO-DH from the bacterium and sequencing of overlapping clones revealed the presence of duplicated sets of genes for three subunits of the enzyme, cutB1C1A1 and cutB2C2A2, in operons, and a cluster of genes encoding proteins that may be involved in CO metabolism, including a possible transcriptional regulator. Phylogenetic analysis based on the amino acid sequences of large subunits of CO-DH suggested that the CO-DHs of Mycobacterium sp. JC1 and other mycobacteria are distinct from those of other types of bacteria. The growth phenotype of mutant strains lacking cutA genes and of a corresponding complemented strain showed that both of the duplicated sets of CO-DH genes were functional in this bacterium. Transcriptional fusions of the cutB genes with lacZ revealed that the cutBCA operons were expressed regardless of the presence of CO and were further inducible by CO. Primer extension analysis indicated two promoters, one expressed in the absence of CO and the other induced in the presence of CO. This is believed to be the first report to show the presence of multiple copies of CO-DH genes with identical sequences and in close proximity in carboxydobacteria, and to present the genetic evidence for the function of the genes in mycobacteria.
-
-
-
Involvement of motility and flagella in Bacillus cereus biofilm formation
More LessBacillus cereus is a food-borne pathogen and a frequent contaminant of food production plants. The persistence of this pathogen in various environments results from the formation of spores and of biofilms. To investigate the role of the B. cereus flagellar apparatus in biofilm formation, we constructed a non-flagellated mutant and a flagellated but non-motile mutant. Unexpectedly, we found that the presence of flagella decreased the adhesion of the bacterium to glass surfaces. We hypothesize that this decrease is a consequence of the flagella hindering a direct interaction between the bacterial cell wall and the surface. In contrast, in specific conditions, motility promotes biofilm formation. Our results suggest that motility could influence biofilm formation by three mechanisms. Motility is necessary for the bacteria to reach surfaces suitable for biofilm formation. In static conditions, reaching the air–liquid interface, where the biofilm forms, is a strong requirement, whereas in flow cells bacteria can have access to the bottom glass slide by sedimentation. Therefore, motility is important for biofilm formation in glass tubes and in microtitre plates, but not in flow cells. Motility also promotes recruitment of planktonic cells within the biofilm by allowing motile bacteria to invade the whole biofilm. Finally, motility is involved in the spreading of the biofilm on glass surfaces.
-
-
-
Differentiation of Mycoplasma gallisepticum strains using PCR and high-resolution melting curve analysis
More LessMycoplasma gallisepticum (MG) is an economically important pathogen of poultry worldwide, causing chronic respiratory disease in chickens and turkeys. Differentiation of MG strains is critical, especially in countries where poultry flocks are vaccinated with live vaccines. In this study, oligonucleotide primers were designed based on a region preceding the trinucleotide repeat of a member of the vlhA gene family, and amplicons of 145–352 bp were generated from cultures of 10 different MG strains, including the ts-11, F and 6/85 vaccine strains. High-resolution melting (HRM) curve analysis of the resultant amplicons could differentiate all MG strains. Analysis of the nucleotide sequences of the amplicons from each strain revealed that each melting curve profile related to a unique DNA sequence. The HRM curve profiles (for ts-11) remained consistent after at least five passages under laboratory conditions. PCR-HRM curve analysis of 33 DNA extracts derived from respiratory swabs, or mycoplasma cultures grown from respiratory swabs, of ts-11-vaccinated commercial or specific pathogen-free chickens identified all these specimens, according to their sequences, as ts-11. The potential of the PCR-HRM curve analysis was also shown in the genotyping of 30 additional MG isolates from Europe, the USA and Israel. The results presented in this study indicate that PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping of MG isolates/strains using both MG cultures and clinical swabs.
-
-
-
Mutations in rpsL that confer streptomycin resistance show pleiotropic effects on virulence and the production of a carbapenem antibiotic in Erwinia carotovora
More LessSpontaneous streptomycin-resistant derivatives of Erwinia carotovora subsp. carotovora strain ATTn10 were isolated. Sequencing of the rpsL locus (encoding the ribosomal protein S12) showed that each mutant was missense, with a single base change, resulting in the substitution of the wild-type lysine by arginine, threonine or asparagine at codon 43. Phenotypic analyses showed that the rpsL mutants could be segregated into two groups: K43R mutants showed reduced production of the β-lactam secondary metabolite 1-carbapen-2-em-3 carboxylic acid (Car), but little effect on exoenzyme production or virulence in potato tuber tests. By contrast, the K43N and K43T mutations were pleiotropic, resulting in reduced exoenzyme production and virulence, as well as diminished Car production. The effect on Car production was due to reduced transcription of the quorum-sensing-dependent car biosynthetic genes. The effects of K43N and K43T mutations on Car production were partially alleviated by provision of an excess of the quorum-sensing signalling molecule N-(3-oxohexanoyl)-l-homoserine lactone. Finally, a proteomic analysis of the K43T mutant indicated that the abundance of a subset of intracellular proteins was affected by this rpsL mutation.
-
-
-
Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio
More LessBdellovibrio and like organisms (BALOs) are obligate prokaryotic predators of other Gram-negative bacteria. Bdellovibrio bacteriovorus is the most studied organism among BALOs. It has a periplasmic life cycle with two major stages: a motile, non-replicative stage spent searching for prey (the attack phase) and a stage spent inside the periplasm of the Gram-negative prey cell (the growth phase) after forming an osmotically stable body termed the bdelloplast. Within Bdellovibrio, there are also strains exhibiting an epibiotic life cycle. The genome sequence of the type strain B. bacteriovorus HD100T revealed the presence of multiple dispersed pil genes encoding type IV pili. Type IV pili in other bacteria are involved in adherence to and invasion of host cells and therefore can be considered to play a role in invasion of prey cells by Bdellovibrio. In this study, genes involved in producing type IV pili were identified in the periplasmic strain B. bacteriovorus 109J and an epibiotic Bdellovibrio sp. strain JSS. The presence of fibres on attack-phase cells was confirmed by examining negative stains of cells fixed with 10 % buffered formalin. Fibres were at the non-flagellated pole on approximately 25 % of attack-phase cells. To confirm that these fibres were type IV pili, a truncated form of PilA lacking the first 35 amino acids was designed to facilitate purification of the protein. The truncated PilA fused to a His-tag was overexpressed in Escherichia coli BL21(DE3) plysS. The fusion protein, accumulated in the insoluble fraction, was purified under denaturing conditions and used to produce polyclonal antisera. Immunoelectron microscopy showed that polar fibres present on the cell surface of the predator were composed of PilA, the major subunit of type IV pili. Immunofluorescence microscopy showed the presence of pilin on attack-phase cells of B. bacteriovorus 109J during attachment to prey cells and just after penetration, inside the bdelloplast. Antibodies against PilA delayed and inhibited predation in co-cultures of Bdellovibrio. This study confirms that type IV pili play a role in invasion of prey cells by Bdellovibrio.
-
- Environmental And Evolutionary Microbiology
-
-
-
Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV
More LessThe ability to utilize atmospheric nitrogen (N2) as a sole nitrogen source is an important trait for prokaryotes. Knowledge of N2 fixation by methanotrophs is needed to understand their role in nitrogen cycling in different environments. The verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ strain SolV was investigated for its ability to fix N2. Physiological studies were combined with nitrogenase activity measurements and phylogenetic analysis of the nifDHK genes, encoding the subunits of the nitrogenase. ‘M. fumariolicum’ SolV was able to fix N2 at low oxygen (O2) concentration (0.5 %, v/v) in chemostat cultures. This low oxygen concentration was also required for an optimal nitrogenase activity [47.4 nmol ethylene h−1 (mg cell dry weight)−1]. Based on acetylene reduction assay and growth experiments, the nitrogenase of strain SolV seems to be extremely oxygen sensitive compared to most proteobacterial methanotrophs. The activity of the nitrogenase was not inhibited by ammonium concentrations up to 94 mM. This is believed to be the first report on the physiology of N2 fixation within the phylum Verrucomicrobia.
-
-
- Genes And Genomes
-
-
-
Pan-genome analysis provides much higher strain typing resolution than multi-locus sequence typing
More LessThe most widely used DNA-based method for bacterial strain typing, multi-locus sequence typing (MLST), lacks sufficient resolution to distinguish among many bacterial strains within a species. Here, we show that strain typing based on the presence or absence of distributed genes is able to resolve all completely sequenced genomes of six bacterial species. This was accomplished by the development of a clustering method, neighbour grouping, which is completely consistent with the lower-resolution MLST method, but provides far greater resolving power. Because the presence/absence of distributed genes can be determined by low-cost microarray analyses, it offers a practical, high-resolution alternative to MLST that could provide valuable diagnostic and prognostic information for pathogenic bacterial species.
-
-
-
-
The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth
More LessIn this report we examine the PEP-dependent phosphotransferase systems (PTSs) of Listeria monocytogenes EGD-e, especially those involved in glucose and cellobiose transport. This L. monocytogenes strain possesses in total 86 pts genes, encoding 29 complete PTSs for the transport of carbohydrates and sugar alcohols, and several single PTS components, possibly supporting transport of these compounds. By a systematic deletion analysis we identified the major PTSs involved in glucose, mannose and cellobiose transport, when L. monocytogenes grows in a defined minimal medium in the presence of these carbohydrates. Whereas all four PTS permeases belonging to the PTSMan family may be involved in mannose transport, only two of these (PTSMan-2 and PTSMan-3), and in addition at least one (PTSGlc-1) of the five PTS permeases belonging to the PTSGlc family, are able to transport glucose, albeit with different efficiencies. Cellobiose is transported mainly by one (PTSLac-4) of the six members belonging to the PTSLac family. In addition, PTSGlc-1 appears to be also able to transport cellobiose. The transcription of the operons encoding PTSMan-2 and PTSLac-4 (but not that of the operon for PTSMan-3) is regulated by LevR-homologous PTS regulation domain (PRD) activators. Whereas the growth rate of the mutant lacking PTSMan-2, PTSMan-3 and PTSGlc-1 is drastically reduced (compared with the wild-type strain) in the presence of glucose, and that of the mutant lacking PTSLac-4 and PTSGlc-1 in the presence of cellobiose, replication of both mutants within epithelial cells or macrophages is as efficient as that of the wild-type strain.
-
- Microbial Pathogenicity
-
-
-
Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage
More LessMembers of the Burkholderia cepacia complex (Bcc) are respiratory pathogens in patients with cystic fibrosis (CF). Close repetitive DNA sequences often associate with surface antigens to promote genetic variability in pathogenic bacteria. The genome of Burkholderia cenocepacia J2315, a CF isolate belonging to the epidemic lineage Edinburgh–Toronto (ET-12), was analysed for the presence of close repetitive DNA sequences. Among the 422 DNA close repeats, 45 genes potentially involved in virulence were identified and grouped into 12 classes; of these, 13 genes were included in the antigens class. Two trimeric autotransporter adhesins (TAA) among the 13 putative antigens are absent from the other Burkholderia genomes and are clustered downstream of the cci island that is a marker for transmissible B. cenocepacia strains. This cluster contains four adhesins, one outer-membrane protein, one sensor histidine kinase and two transcriptional regulators. By using PCR, we analysed three genes among 47 Bcc isolates to determine whether the cluster was conserved. These three genes were present in the isolates of the ET-12 lineage but absent in all the other members. Furthermore, the BCAM0224 gene was exclusively detected in this epidemic lineage and may serve as a valuable new addition to the field of Bcc diagnostics. The BCAM0224 gene encodes a putative TAA that demonstrates adhesive properties to the extracellular matrix protein collagen type I. Quantitative real-time PCR analysis indicated that BCAM0224 gene expression occurred preferentially for cells grown under high osmolarity, oxygen-limited conditions and oxidative stress. Inactivation of BCAM0224 in B. cenocepacia attenuates the ability of the mutant to promote cell adherence in vitro and impairs the overall bacterial virulence against Galleria mellonella as a model of infection. Together, our data show that BCAM0224 from B. cenocepacia J2315 represents a new collagen-binding TAA with no bacterial orthologues which has an important role in cellular adhesion and virulence.
-
-
-
-
Infection of the Circulifer haematoceps cell line Ciha-1 by Spiroplasma citri: the non-insect-transmissible strain 44 is impaired in invasion
Successful transmission of Spiroplasma citri by its leafhopper vector requires a specific interaction between the spiroplasma surface and the insect cells. With the aim of studying these interactions at the cellular and molecular levels, a cell line, named Ciha-1, was established using embryonic tissues from the eggs of the S. citri natural vector Circulifer haematoceps. This is the first report, to our knowledge, of a cell line for this leafhopper species and of its successful infection by the insect-transmissible strain S. citri GII3. Adherence of the spiroplasmas to the cultured Ciha-1 cells was studied by c.f.u. counts and by electron microscopy. Entry of the spiroplasmas into the insect cells was analysed quantitatively by gentamicin protection assays and qualitatively by double immunofluorescence microscopy. Spiroplasmas were detected within the cell cytoplasm as early as 1 h after inoculation and survived at least 2 days inside the cells. Comparing the insect-transmissible GII3 and non-insect-transmissible 44 strains revealed that adherence to and entry into Ciha-1 cells of S. citri 44 were significantly less efficient than those of S. citri GII3.
-
-
-
Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants
More LessDuring the chronic lung infection of patients with cystic fibrosis (CF), Pseudomonas aeruginosa can survive for long periods due to adaptive evolution mediated by genetic variation. Hypermutability is considered to play an important role in this adaptive evolution and it has been demonstrated that mutator populations are amplified in the CF lung by hitchhiking with adaptive mutations. Two of the genes that are frequently mutated in isolates from chronic infection are mucA and lasR. Loss-of-function mutations in these genes determine the phenotypic switch to mucoidy and loss of quorum sensing, which are considered hallmarks of chronic virulence. The aims of our study were to investigate (1) the genetic background of the P. aeruginosa subpopulations with non-mutator, weak or strong mutator phenotype and their dynamics during the chronic lung infection, and (2) the time sequence in which the hypermutable, mucoid and quorum-sensing-negative phenotypes emerge during chronic lung infection. For these purposes the sequences of mutS, mutL, uvrD, mutT, mutY and mutM anti-mutator genes as well as of mucA and lasR were analysed in 70 sequential P. aeruginosa isolates obtained from the respiratory secretions of 10 CF patients (one to three isolates per time point). Analysis of the genetic background of the mutator phenotype showed that mutS was the most commonly affected gene followed by mutL in isolates with strong mutator phenotype. The mutT, mutY, mutM genes were affected in isolates with low fold-changes in the mutation frequencies compared to the reference strain PAO1. Isolates with non-mutator, weak or strong mutator phenotype were represented at all time points showing co-existence of these subpopulations, which suggests parallel evolution of the various mutators in the different focal niches of infection in the CF lung. Mutations in mucA and lasR occurred earlier than mutations in the anti-mutator genes, showing that hypermutability is not a prerequisite for the acquisition of mucoidy and loss of quorum sensing, considered hallmarks of chronic virulence. Significantly higher mutation rates and MICs of ceftazidime, meropenem and ciprofloxacin were found for isolates collected late (more than 10 years) during the chronic lung infection compared to isolates collected earlier, which suggests an amplification of the mutator subpopulation by hitchhiking with development of antibiotic resistance. Similar evolutionary pathways concordant with adaptive radiation were observed in different clonal lineages of P. aeruginosa from CF patients.
-
-
-
Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella–host cell interactions in vitro
Salmonella invade non-phagocytic cells by inducing massive actin rearrangements, resulting in membrane ruffle formation and phagocytosis of the bacteria. This process is mediated by a cohort of effector proteins translocated into the host cell by type III secretion system 1, which is encoded by genes in the Salmonella pathogenicity island (SPI) 1 regulon. This network is precisely regulated and must be induced outside of host cells. In vitro invasive Salmonella are prepared by growth in synthetic media although the details vary. Here, we show that culture conditions affect the frequency, and therefore invasion efficiency, of SPI1-induced bacteria and also can affect the ability of Salmonella to adapt to its intracellular niche following invasion. Aerobically grown late-exponential-phase bacteria were more invasive and this was associated with a greater frequency of SPI1-induced, motile bacteria, as revealed by single-cell analysis of gene expression. Culture conditions also affected the ability of Salmonella to adapt to the intracellular environment, since they caused marked differences in intracellular replication. These findings show that induction of SPI1 under different pre-invasion growth conditions can affect the ability of Salmonella to interact with eukaryotic host cells.
-
-
-
Transposon mutagenesis in a hyper-invasive clinical isolate of Campylobacter jejuni reveals a number of genes with potential roles in invasion
Transposon mutagenesis has been applied to a hyper-invasive clinical isolate of Campylobacter jejuni, 01/51. A random transposon mutant library was screened in an in vitro assay of invasion and 26 mutants with a significant reduction in invasion were identified. Given that the invasion potential of C. jejuni is relatively poor compared to other enteric pathogens, the use of a hyper-invasive strain was advantageous as it greatly facilitated the identification of mutants with reduced invasion. The location of the transposon insertion in 23 of these mutants has been determined; all but three of the insertions are in genes also present in the genome-sequenced strain NCTC 11168. Eight of the mutants contain transposon insertions in one region of the genome (∼14 kb), which when compared with the genome of NCTC 11168 overlaps with one of the previously reported plasticity regions and is likely to be involved in genomic variation between strains. Further characterization of one of the mutants within this region has identified a gene that might be involved in adhesion to host cells.
-
-
-
Growth-related changes in intracellular spermidine and its effect on efflux pump expression and quorum sensing in Burkholderia pseudomallei
More LessThe Burkholderia pseudomallei BpeAB-OprB resistance-nodulation-division (RND) family pump effluxes aminoglycoside and macrolide antibiotics as well as acylhomoserine lactones (AHLs) involved in quorum sensing. Expression of bpeA–lacZ was cell density-dependent and was inducible in the presence of these compounds. Intracellular levels of spermidine and N-acetylspermidine increased with cell density in wild-type B. pseudomallei KHW, but were always lower in the bpeAB pump mutant at all growth phases. The significance of changes in intracellular spermidine on efflux pump expression was demonstrated by the disruption of the binding of the BpeR repressor protein to the bpeABoprB regulatory region in vitro in the presence of increasing spermidine concentrations. This was supported by dose-dependent activation of bpeA–lacZ transcription in vivo in the presence of exogenous spermidine and N-acetylspermidine, thus implicating the involvement of the BpeAB-OprB pump in spermidine homeostasis in B. pseudomallei. Consequently, inhibition of intracellular spermidine synthesis reduced the efflux of AHLs by BpeAB-OprB. Other potential therapeutic applications of spermidine synthase inhibitors include the reduction of swimming motility and biofilm formation by B. pseudomallei.
-
-
-
Modulation of transcription and characterization of the promoter organization of the autotransporter adhesin heptosyltransferase and the autotransporter adhesin AIDA-I
More LessIn Gram-negative bacteria, autotransporter proteins constitute the largest family of secreted proteins, and exhibit many different functions. In recent years, research has largely focused on mechanisms of autotransporter protein translocation, where several alternative models are still being discussed. In contrast, the biogenesis of only a few autotransporters has been studied and, likewise, regulation of expression has received only very limited attention. The glycosylated autotransporter adhesin involved in diffuse adherence (AIDA)-I system consists of the aah gene, encoding a specific autotransporter adhesin heptosyltransferase (AAH), and the aidA gene, encoding the autotransporter protein (AIDA-I). In this study, we investigated the promoter organization and transcription of these two genes using reporter plasmids carrying lacZ transcriptional fusions. The two genes, aah and aidA, are transcribed as a bicistronic message. However, aidA is additionally transcribed from its own promoter. There are two distinct start sites for each of the two genes. Interestingly, transcription of both genes is enhanced in hns and rfaH mutant backgrounds. Furthermore, we addressed the influence of environmental factors and different genetic backgrounds of Escherichia coli K-12 strains on transcription activity. We found that transcription varied considerably in different E. coli K-12 laboratory strains and under different growth conditions.
-
-
-
A transcriptome study of the QseEF two-component system and the QseG membrane protein in enterohaemorrhagic Escherichia coli O157 : H7
More LessQseE is a sensor kinase that responds to epinephrine, sulfate and phosphate. QseE constitutes a two-component signalling system together with the QseF σ 54-dependent response regulator. Encoded within the same operon as qseEF is the qseG gene, which encodes a membrane protein involved in the translocation of a type III secretion effector protein of enterohaemorrhagic Escherichia coli (EHEC) into epithelial cells. The qseEGF genes also form an operon with the glnB gene, which encodes the E. coli nitrogen sensor PII protein. Here we report a transcriptome analysis comparing qseE, qseF andqseG single mutants with the wild-type strain. This study revealed that the proteins encoded by these genes play a modest but significant role in iron uptake. Although QseEFG regulate genes involved in nitrogen utilization, these proteins do not play a notable role in nitrogen metabolism. In addition, QseEFG regulate transcription of the rcsBC and phoPQ two-component systems, linking several signal transduction pathways. The similarity of the microarray profiles of these mutants also indicates that these proteins work together. These data indicate that QseEFG are involved in the regulation of virulence and metabolism in EHEC.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
