1887

Abstract

ATP-binding cassette (ABC) transporters are one of the largest protein superfamilies and are found in all living organisms. These transporters use the energy from ATP binding and hydrolysis to transport various substrates. In this review, we focus on the structural and functional aspects of ABC transporters, with special emphasis on type VII ABC transporters, a newly defined class possessing characteristic structures. A notable feature of type VII ABC transporters is that they assemble into tripartite complexes that span both the inner and outer membranes of Gram-negative bacteria. One of the original type VII ABC transporters, which possesses all characteristic features of this class, is the macrolide efflux transporter MacB. Recent structural analyses of MacB and homologue proteins revealed the unique mechanisms of substrate translocation by type VII ABC transporters.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001257
2022-11-21
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/11/mic001257.html?itemId=/content/journal/micro/10.1099/mic.0.001257&mimeType=html&fmt=ahah

References

  1. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64:159–204 [View Article] [PubMed]
    [Google Scholar]
  2. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr 2016; 4: [View Article]
    [Google Scholar]
  3. Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 2000; 64:672–693 [View Article] [PubMed]
    [Google Scholar]
  4. Kim J, Cater RJ, Choy BC, Mancia F. Structural insights into transporter-mediated drug resistance in infectious diseases. J Mol Biol 2021; 433:167005 [View Article]
    [Google Scholar]
  5. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 2000; 405:914–919 [View Article] [PubMed]
    [Google Scholar]
  6. Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002; 419:587–593 [View Article] [PubMed]
    [Google Scholar]
  7. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 2006; 443:173–179 [View Article] [PubMed]
    [Google Scholar]
  8. Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 2006; 14:577–587 [View Article] [PubMed]
    [Google Scholar]
  9. Du D, Wang Z, James NR, Voss JE, Klimont E et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature 2014; 509:512–515 [View Article] [PubMed]
    [Google Scholar]
  10. Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II et al. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife 2017; 6:e24905 [View Article]
    [Google Scholar]
  11. Lewis K. Translocases: a bacterial tunnel for drugs and proteins. Curr Biol 2000; 10:R678–81 [View Article] [PubMed]
    [Google Scholar]
  12. Yousefian N, Ornik-Cha A, Poussard S, Decossas M, Berbon M et al. Structural characterization of the EmrAB-TolC efflux complex from E. coli. Biochim Biophys Acta Biomembr 2021; 1863:183488 [View Article]
    [Google Scholar]
  13. Thomas C, Aller SG, Beis K, Carpenter EP, Chang G et al. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 2020; 594:3767–3775 [View Article] [PubMed]
    [Google Scholar]
  14. Hollenstein K, Frei DC, Locher KP. Structure of an ABC transporter in complex with its binding protein. Nature 2007; 446:213–216 [View Article] [PubMed]
    [Google Scholar]
  15. Hvorup RN, Goetz BA, Niederer M, Hollenstein K, Perozo E et al. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 2007; 317:1387–1390 [View Article] [PubMed]
    [Google Scholar]
  16. Xu K, Zhang M, Zhao Q, Yu F, Guo H et al. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 2013; 497:268–271 [View Article] [PubMed]
    [Google Scholar]
  17. Dawson RJP, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature 2006; 443:180–185 [View Article] [PubMed]
    [Google Scholar]
  18. Lee J-Y, Kinch LN, Borek DM, Wang J, Wang J et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 2016; 533:561–564 [View Article] [PubMed]
    [Google Scholar]
  19. Luo Q, Yang X, Yu S, Shi H, Wang K et al. Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nat Struct Mol Biol 2017; 24:469–474 [View Article] [PubMed]
    [Google Scholar]
  20. Okada U, Yamashita E, Neuberger A, Morimoto M, van Veen HW et al. Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat Commun 2017; 8:1336 [View Article]
    [Google Scholar]
  21. Crow A, Greene NP, Kaplan E, Koronakis V. Structure and mechanotransmission mechanism of the MacB ABC transporter superfamily. Proc Natl Acad Sci 2017; 114:12572–12577 [View Article]
    [Google Scholar]
  22. Fitzpatrick AWP, Llabrés S, Neuberger A, Blaza JN, Bai X-C et al. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2017; 2:17070 [View Article] [PubMed]
    [Google Scholar]
  23. Kobayashi N, Nishino K, Yamaguchi A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 2001; 183:5639–5644 [View Article] [PubMed]
    [Google Scholar]
  24. Yamanaka H, Kobayashi H, Takahashi E, Okamoto K. MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II. J Bacteriol 2008; 190:7693–7698 [View Article] [PubMed]
    [Google Scholar]
  25. Turlin E, Heuck G, Simões Brandão MI, Szili N, Mellin JR et al. Protoporphyrin (PPIX) efflux by the MacAB-TolC pump in Escherichia coli. Microbiologyopen 2014; 3:849–859 [View Article] [PubMed]
    [Google Scholar]
  26. Shi K, Cao M, Li C, Huang J, Zheng S et al. Efflux proteins MacAB confer resistance to arsenite and penicillin/macrolide-type antibiotics in Agrobacterium tumefaciens 5A. World J Microbiol Biotechnol 2019; 35:115 [View Article]
    [Google Scholar]
  27. Xu Y, Sim S-H, Nam KH, Jin XL, Kim H-M et al. Crystal structure of the periplasmic region of MacB, a noncanonic ABC transporter. Biochemistry 2009; 48:5218–5225 [View Article] [PubMed]
    [Google Scholar]
  28. Yang HB, Hou WT, Cheng MT, Jiang YL, Chen Y et al. Structure of a MacAB-like efflux pump from streptococcus pneumoniae. Nat Commun 2018; 9:196 [View Article]
    [Google Scholar]
  29. Holm L. Dali server: structural unification of protein families. Nucleic Acids Res 2022:gkac387 [View Article]
    [Google Scholar]
  30. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009; 323:1718–1722 [View Article] [PubMed]
    [Google Scholar]
  31. Li J, Jaimes KF, Aller SG. Refined structures of mouse P-glycoprotein. Protein Sci 2014; 23:34–46 [View Article] [PubMed]
    [Google Scholar]
  32. Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H et al. Structure of the human multidrug transporter ABCG2. Nature 2017; 546:504–509 [View Article] [PubMed]
    [Google Scholar]
  33. Yum S, Xu Y, Piao S, Sim S-H, Kim H-M et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J Mol Biol 2009; 387:1286–1297 [View Article] [PubMed]
    [Google Scholar]
  34. Xu Y, Moeller A, Jun S-Y, Le M, Yoon B-Y et al. Assembly and channel opening of outer membrane protein in tripartite drug efflux pumps of Gram-negative bacteria. J Biol Chem 2012; 287:11740–11750 [View Article] [PubMed]
    [Google Scholar]
  35. Tikhonova EB, Devroy VK, Lau SY, Zgurskaya HI. Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB. Mol Microbiol 2007; 63:895–910 [View Article] [PubMed]
    [Google Scholar]
  36. Nakamura H, Hisano T, Rahman MM, Tosha T, Shirouzu M et al. Structural basis for heme detoxification by an ATP-binding cassette-type efflux pump in gram-positive pathogenic bacteria. Proc Natl Acad Sci 2022; 119:27 [View Article]
    [Google Scholar]
  37. Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun 2011; 79:548–561 [View Article] [PubMed]
    [Google Scholar]
  38. El Rayes J, Rodríguez-Alonso R, Collet JF. Lipoproteins in Gram-negative bacteria: new insights into their biogenesis, subcellular targeting and functional roles. Curr Opin Microbiol 2021; 61:25–34 [View Article] [PubMed]
    [Google Scholar]
  39. Zückert WR. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 2014; 1843:1509–1516 [View Article] [PubMed]
    [Google Scholar]
  40. Narita SI, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1414–1423 [View Article]
    [Google Scholar]
  41. Tang X, Chang S, Zhang K, Luo Q, Zhang Z et al. Structural basis for bacterial lipoprotein relocation by the transporter LolCDE. Nat Struct Mol Biol 2021; 28:347–355 [View Article] [PubMed]
    [Google Scholar]
  42. Sharma S, Zhou R, Wan L, Feng S, Song K et al. Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins. Nat Commun 2021; 12:4687 [View Article]
    [Google Scholar]
  43. Asmar AT, Collet JF. Lpp, the Braun lipoprotein, turns 50-major achievements and remaining issues. FEMS Microbiol Lett 2018; 365:18 [View Article] [PubMed]
    [Google Scholar]
  44. Souabni H, Batista Dos Santos W, Cece Q, Catoire LJ, Puvanendran D et al. Quantitative real-time analysis of the efflux by the MacAB-TolC tripartite efflux pump clarifies the role of ATP hydrolysis within mechanotransmission mechanism. Commun Biol 2021; 4:493 [View Article]
    [Google Scholar]
  45. Jardetzky O. Simple allosteric model for membrane pumps. Nature 1966; 211:969–970 [View Article] [PubMed]
    [Google Scholar]
  46. Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic resistance mediated by the MacB ABC transporter family: a structural and functional perspective. Front Microbiol 2018; 9:950 [View Article]
    [Google Scholar]
  47. Murakami S, Okada U, van Veen HW. Tripartite transporters as mechanotransmitters in periplasmic alternating-access mechanisms. FEBS Lett 2020; 594:3908–3919 [View Article] [PubMed]
    [Google Scholar]
  48. Rouquette-Loughlin CE, Balthazar JT, Shafer WM. Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 2005; 56:856–860 [View Article] [PubMed]
    [Google Scholar]
  49. Golparian D, Shafer WM, Ohnishi M, Unemo M. Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2014; 58:3556–3559 [View Article] [PubMed]
    [Google Scholar]
  50. Nishino K, Latifi T, Groisman EA. Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 2006; 59:126–141 [View Article] [PubMed]
    [Google Scholar]
  51. Imperi F, Tiburzi F, Visca P. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci 2009; 106:20440–20445 [View Article]
    [Google Scholar]
  52. Lin MF, Lin YY, Lan CY. The role of the two-component system BaeSR in disposing chemicals through regulating transporter systems in Acinetobacter baumannii. PLoS One 2015; 10:e0132843 [View Article]
    [Google Scholar]
  53. Zheng JX, Lin ZW, Sun X, Lin WH, Chen Z et al. Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg Microbes Infect 2018; 7:139 [View Article]
    [Google Scholar]
  54. Sun L, Sun L, Li X, Hu X, Wang X et al. A novel tigecycline adjuvant ML-7 reverses the susceptibility of tigecycline-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2021; 11:809542 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001257
Loading
/content/journal/micro/10.1099/mic.0.001257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error