Antimicrobial Efflux
Bacterial efflux pumps are a complex and diverse set of membrane proteins responsible for transport of substrates between cellular compartments or to the outside of bacterial cells. They are important mediators of antimicrobial resistance and are critical for many bacterial pathogens to cause infection and form biofilm. This collection has been put together to mark two very special anniversaries. It is 40 years since George and Levy (1983) published the discovery of the first 'energy-dependent efflux system' conferring resistance to Tetracycline and 30 years since the first description of the pumps from the RND family (Poole et al., 1993 and Ma et al., 1993). In this time our understanding of efflux function, physiology and structure have been transformed. This special collection is guest edited by Drs Jessica Blair and Ayush Kumar and aims to highlight the diversity of efflux pump research and the most recent advances in this fascinating field.
Collection Contents
-
-
Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB
More LessGram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
-
-
-
Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa
More LessDrug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
-
-
-
AadT, a new weapon in Acinetobacter’s fight against antibiotics
More LessGenes encoding a novel multidrug efflux pump, AadT, from the Drug:H+ antiporter 2 family, were discovered in Acinetobacter multidrug resistance plasmids. Here, we profiled the antimicrobial resistance potential, and examined the distribution of these genes. aadT homologs were found in many Acinetobacter and other Gram-negative species and were typically adjacent to novel variants of adeAB(C), which encodes a major tripartite efflux pump in Acinetobacter . The AadT pump decreased bacterial susceptibility to at least eight diverse antimicrobials, including antibiotics (erythromycin and tetracycline), biocides (chlorhexidine), and dyes (ethidium bromide and DAPI) and was able to mediate ethidium transport. These results show that AadT is a multidrug efflux pump in the Acinetobacter resistance arsenal and may cooperate with variants of AdeAB(C).
-
-
-
Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors
More LessThe problem of antibiotic resistance among pathogenic bacteria has reached a crisis level. The treatment options against infections caused by multiple drug-resistant bacteria are shrinking gradually. The current pace of the discovery of new antibacterial entities is lagging behind the rate of development of new resistance. Efflux pumps play a central role in making a bacterium resistant to multiple antibiotics due to their ability to expel a wide range of structurally diverse compounds. Besides providing an escape from antibacterial compounds, efflux pumps are also involved in bacterial stress response, virulence, biofilm formation, and altering host physiology. Efflux pumps are unique yet challenging targets for the discovery of novel efflux pump inhibitors (EPIs). EPIs could help rejuvenate our currently dried pipeline of antibacterial drug discovery. The current article highlights the recent developments in the field of efflux pumps, challenges faced during the development of EPIs and potential approaches for their development. Additionally, this review highlights the utility of resources such as natural products and machine learning to expand our EPIs arsenal using these latest technologies.
-
-
-
E. coli ST11 (O157:H7) does not encode a functional AcrF efflux pump
More LessEscherichia coli is a facultative anaerobe found in a wide range of environments. Commonly described as the laboratory workhorse, E. coli is one of the best characterized bacterial species to date, however much of our understanding comes from studies involving the laboratory strain E. coli K-12. Resistance-nodulation-division efflux pumps are found in Gram-negative bacteria and can export a diverse range of substrates, including antibiotics. E. coli K-12 has six RND pumps; AcrB, AcrD, AcrF, CusA, MdtBC and MdtF, and it is frequently reported that all E. coli strains possess these six pumps. However, this is not true of E. coli ST11, a lineage of E. coli , which is primarily composed of the highly virulent important human pathogen, E. coli O157:H7. Here we show that acrF is absent from the pangenome of ST11 and that this lineage of E. coli has a highly conserved insertion within the acrF gene, which when translated encodes 13 amino acids and two stop codons. This insertion was found to be present in 97.59 % of 1787 ST11 genome assemblies. Non-function of AcrF in ST11 was confirmed in the laboratory as complementation with acrF from ST11 was unable to restore AcrF function in E. coli K-12 substr. MG1655 ΔacrB ΔacrF. This shows that the complement of RND efflux pumps present in laboratory bacterial strains may not reflect the situation in virulent strains of bacterial pathogens.
-
-
-
Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies?
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of ‘molecular guns’ known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein–lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
-
-
-
Genome-wide analysis of genes involved in efflux function and regulation within Escherichia coli and Salmonella enterica serovar Typhimurium
More LessThe incidence of multidrug-resistant bacteria is increasing globally, with efflux pumps being a fundamental platform limiting drug access and synergizing with other mechanisms of resistance. Increased expression of efflux pumps is a key feature of most cells that are resistant to multiple antibiotics. Whilst expression of efflux genes can confer benefits, production of complex efflux systems is energetically costly and the expression of efflux is highly regulated, with cells balancing benefits against costs. This study used TraDIS-Xpress, a genome-wide transposon mutagenesis technology, to identify genes in Escherichia coli and Salmonella Typhimurium involved in drug efflux and its regulation. We exposed mutant libraries to the canonical efflux substrate acriflavine in the presence and absence of the efflux inhibitor phenylalanine-arginine β-naphthylamide. Comparisons between conditions identified efflux-specific and drug-specific responses. Known efflux-associated genes were easily identified, including acrAB, tolC, marRA, ramRA and soxRS, confirming the specificity of the response. Further genes encoding cell envelope maintenance enzymes and products involved with stringent response activation, DNA housekeeping, respiration and glutathione biosynthesis were also identified as affecting efflux activity in both species. This demonstrates the deep relationship between efflux regulation and other cellular regulatory networks. We identified a conserved set of pathways crucial for efflux activity in these experimental conditions, which expands the list of genes known to impact on efflux efficacy. Responses in both species were similar and we propose that these common results represent a core set of genes likely to be relevant to efflux control across the Enterobacteriaceae.
-
-
-
Do mitochondria use efflux pumps to protect their ribosomes from antibiotics?
More LessFungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.
-
-
-
Small multidrug resistance protein EmrE phenotypically associates with OmpW, DcrB and YggM for osmotic stress protection by betaine in Escherichia coli
More LessThe small multidrug resistance (SMR) protein EmrE resides in the inner membrane and provides resistance against a wide range of antiseptic quaternary cationic compounds (QCCs) for the Gram-negative bacterium Escherichia coli . We have reported previously that overexpression of the emrE gene results in the reduction of pH and osmotic tolerance, likely through EmrE-mediated biological QCC-based osmoprotectant efflux, indicating a potential physiological role for EmrE beyond providing drug resistance. EmrE is the most studied member of SMR transporter family; however, it is not known how the substrates translocated by EmrE move across the periplasm and through the outer membrane (OM). We have shown that the OM protein OmpW participates in the EmrE-mediated substrate efflux process and provided a hypothesis for the present study that additional OM and periplasmic proteins participate in the translocation process. To test the hypothesis, we conducted alkaline pH-based growth phenotype screens under emrE overexpression conditions. This screen identified 10 additional genes that appear to contribute to the EmrE-coupled osmoprotectant efflux: gspD, hofQ, yccZ, acrA, emrA, emrB, proX, osmF, dcrB and yggM. Further screening of these genes using a hyperosmotic growth phenotype assay in the presence and the absence of the osmoprotectant glycine betaine identified ompW and two periplasmic protein genes, dcrB and yggM, are mechanistically linked to EmrE.
-
-
-
Efflux-mediated tolerance to cationic biocides, a cause for concern?
More LessAbstract
With an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.
-
-
-
Exploring functional interplay amongst Escherichia coli efflux pumps
Bacterial efflux pumps exhibit functional interplay that can translate to additive or multiplicative effects on resistance to antimicrobial compounds. In diderm bacteria, two different efflux pump structural types – single-component inner membrane efflux pumps and cell envelope-spanning multicomponent systems – cooperatively export antimicrobials with cytoplasmic targets from the cell. Harnessing our recently developed efflux platform, which is built upon an extensively efflux-deficient strain of Escherichia coli , here we explore interplay amongst a panel of diverse E. coli efflux pumps. Specifically, we assessed the effect of simultaneously expressing two efflux pump-encoding genes on drug resistance, including single-component inner membrane efflux pumps (MdfA, MdtK and EmrE), tripartite complexes (AcrAB, AcrAD, MdtEF and AcrEF), and the acquired TetA(C) tetracycline resistance pump. Overall, the expression of two efflux pump-encoding genes from the same structural type did not enhance resistance levels regardless of the antimicrobial compound or efflux pump under investigation. In contrast, a combination of the tripartite efflux systems with single-component pumps sharing common substrates provided multiplicative increases to antimicrobial resistance levels. In some instances, resistance was increased beyond the product of resistance provided by the two pumps individually. In summary, the developed efflux platform enables the isolation of efflux pump function, facilitating the identification of interactions between efflux pumps.
-
-
-
Structural and functional characteristics of the tripartite ABC transporter
More LessATP-binding cassette (ABC) transporters are one of the largest protein superfamilies and are found in all living organisms. These transporters use the energy from ATP binding and hydrolysis to transport various substrates. In this review, we focus on the structural and functional aspects of ABC transporters, with special emphasis on type VII ABC transporters, a newly defined class possessing characteristic structures. A notable feature of type VII ABC transporters is that they assemble into tripartite complexes that span both the inner and outer membranes of Gram-negative bacteria. One of the original type VII ABC transporters, which possesses all characteristic features of this class, is the macrolide efflux transporter MacB. Recent structural analyses of MacB and homologue proteins revealed the unique mechanisms of substrate translocation by type VII ABC transporters.
-
-
-
Unravelling microbial efflux through mathematical modelling
More LessAbstract
Mathematical modelling is a useful tool that is increasingly used in the life sciences to understand and predict the behaviour of biological systems. This review looks at how this interdisciplinary approach has advanced our understanding of microbial efflux, the process by which microbes expel harmful substances. The discussion is largely in the context of antimicrobial resistance, but applications in synthetic biology are also touched upon. The goal of this paper is to spark further fruitful collaborations between modellers and experimentalists in the efflux community and beyond.
-
-
-
Exploration of the presence and abundance of multidrug resistance efflux genes in oil and gas environments
More LessAs sequencing technology improves and the cost of metagenome sequencing decreases, the number of sequenced environments increases. These metagenomes provide a wealth of data in the form of annotated and unannotated genes. The role of multidrug resistance efflux pumps (MDREPs) is the removal of antibiotics, biocides and toxic metabolites created during aromatic hydrocarbon metabolism. Due to their naturally occurring role in hydrocarbon metabolism and their role in biocide tolerance, MDREP genes are of particular importance for the protection of pipeline assets. However, the heterogeneity of MDREP genes creates a challenge during annotation and detection. Here we use a selection of primers designed to target MDREPs in six pure species and apply them to publicly available metagenomes associated with oil and gas environments. Using in silico PCR with relaxed primer binding conditions we probed the metagenomes of a shale reservoir, a heavy oil tailings pond, a civil wastewater treatment, two marine sediments exposed to hydrocarbons following the Deepwater Horizon oil spill and a non-exposed marine sediment to assess the presence and abundance of MDREP genes. Through relaxed primer binding conditions during in silico PCR, the prevalence of MDREPs was determined. The percentage of nucleotide sequences identified by the MDREP primers was partially augmented by exposure to hydrocarbons in marine sediment and in shale reservoir compared to hydrocarbon-free marine sediments while tailings ponds and wastewater had the highest percentages. We believe this approach lays the groundwork for a supervised method of identifying poorly conserved genes within metagenomes.
-
-
-
Transcriptional regulation of the mtrCDE efflux pump operon: importance for Neisseria gonorrhoeae antimicrobial resistance
More LessThis review focuses on the mechanisms of transcriptional control of an important multidrug efflux pump system (MtrCDE) possessed by Neisseria gonorrhoeae , the aetiological agent of the sexually transmitted infection termed gonorrhoea. The mtrCDE operon that encodes this tripartite protein efflux pump is subject to both cis- and trans-acting transcriptional factors that negatively or positively influence expression. Critically, levels of MtrCDE can influence levels of gonococcal susceptibility to classical antibiotics, host-derived antimicrobials and various biocides. The regulatory systems that control mtrCDE can have profound influences on the capacity of gonococci to resist current and past antibiotic therapy regimens as well as virulence. The emergence, mechanisms of action and clinical significance of the transcriptional regulatory systems that impact mtrCDE expression in gonococci are reviewed here with the aim of linking bacterial antimicrobial resistance with multidrug efflux capability.
-