1887

Abstract

is an opportunistic bacterial pathogen that has been shown to interact with many organisms throughout the domains of life, including plants. How this broad-host-range bacterium interacts with each of its diverse hosts, especially the metabolites that mediate these interactions, is not completely known. In this work, we used a liquid culture root infection system to collect plant and bacterial metabolites on days 1, 3 and 5 post-. (strain PA14) infection of the oilseed plant, canola (). Using MS-based metabolomics approaches, we identified the overproduction of quorum sensing (QS)-related (both signalling molecules and regulated products) metabolites by while interacting with canola plants. However, the infection induced the production of several phytoalexins, which is a part of the hallmark plant defence response to microbes. The QS system of PA14 appears to only mediate part of the canola metabolomic interactions, as the use of isogenic mutant strains of each of the three QS signalling branches did not significantly affect the induction of the phytoalexin brassilexin, while induction of spirobrassinin was significantly decreased. Interestingly, a treatment of purified QS molecules in the absence of bacteria was not able to induce any phytoalexin production, suggesting that active bacterial colonization is required for eliciting phytoalexin production. Furthermore, we identified that brassilexin, the only commercially available phytoalexin that was detected in this study, demonstrated a MIC of 400 µg ml against PA14. The production of phytoalexins can be an effective component of canola innate immunity to keep potential infections by the opportunistic pathogen at bay.

Funding
This study was supported by the:
  • Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Award RGPIN/04912-2016)
    • Principle Award Recipient: ChengZhenyu
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001212
2022-08-18
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/8/mic001212.html?itemId=/content/journal/micro/10.1099/mic.0.001212&mimeType=html&fmt=ahah

References

  1. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995; 268:1899–1902 [View Article] [PubMed]
    [Google Scholar]
  2. Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 2000; 182:3843–3845 [View Article] [PubMed]
    [Google Scholar]
  3. Tan M-W, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 1999; 96:2408–2413 [View Article] [PubMed]
    [Google Scholar]
  4. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 2000; 288:1251–1254 [View Article] [PubMed]
    [Google Scholar]
  5. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000; 2:1051–1060 [View Article] [PubMed]
    [Google Scholar]
  6. Clatworthy AE, Lee JSW, Leibman M, Kostun Z, Davidson AJ et al. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect Immun 2009; 77:1293–1303 [View Article] [PubMed]
    [Google Scholar]
  7. Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J et al. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect 2007; 13:560–578 [View Article] [PubMed]
    [Google Scholar]
  8. Engelhart ST, Krizek L, Glasmacher A, Fischnaller E, Marklein G et al. Pseudomonas aeruginosa outbreak in a haematology-oncology unit associated with contaminated surface cleaning equipment. J Hosp Infect 2002; 52:93–98 [View Article] [PubMed]
    [Google Scholar]
  9. Girou E, Chai SHT, Oppein F, Legrand P, Ducellier D et al. Misuse of gloves: the foundation for poor compliance with hand hygiene and potential for microbial transmission?. J Hosp Infect 2004; 57:162–169 [View Article] [PubMed]
    [Google Scholar]
  10. Clara FM. A new bacterial leaf disease of tobacco in the Philippines. Phytopathol 1930; 20:691–706
    [Google Scholar]
  11. Kominos SD, Copeland CE, Grosiak B, Postic B. Introduction of Pseudomonas aeruginosa into a hospital via vegetables. Appl Microbiol 1972; 24:567–570 [View Article] [PubMed]
    [Google Scholar]
  12. Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC et al. Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA 2000; 97:8815–8821 [View Article] [PubMed]
    [Google Scholar]
  13. Rahme LG, Tan MW, Le L, Wong SM, Tompkins RG et al. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci USA 1997; 94:13245–13250 [View Article] [PubMed]
    [Google Scholar]
  14. Cheng Z, Li J-F, Niu Y, Zhang X-C, Woody OZ et al. Pathogen-secreted proteases activate a novel plant immune pathway. Nature 2015; 521:213–216 [View Article] [PubMed]
    [Google Scholar]
  15. Djonović S, Urbach JM, Drenkard E, Bush J, Feinbaum R et al. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 2013; 9:e1003217 [View Article] [PubMed]
    [Google Scholar]
  16. Plotnikova JM, Rahme LG, Ausubel FM. Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis. Plant Physiol 2000; 124:1766–1774 [View Article] [PubMed]
    [Google Scholar]
  17. He J, Baldini RL, Déziel E, Saucier M, Zhang Q et al. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci USA 2004; 101:2530–2535 [View Article] [PubMed]
    [Google Scholar]
  18. Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature 2017; 551:313–320 [View Article] [PubMed]
    [Google Scholar]
  19. Azimi S, Klementiev AD, Whiteley M, Diggle SP. Bacterial quorum sensing during infection. Annu Rev Microbiol 2020; 74:201–219 [View Article] [PubMed]
    [Google Scholar]
  20. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 2012; 76:46–65 [View Article] [PubMed]
    [Google Scholar]
  21. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993; 260:1127–1130 [View Article] [PubMed]
    [Google Scholar]
  22. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 1994; 91:197–201 [View Article] [PubMed]
    [Google Scholar]
  23. Pearson JP, Passador L, Iglewski BH, Greenberg EP. A second N-acyl homoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1995; 92:1490–1494 [View Article] [PubMed]
    [Google Scholar]
  24. Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R et al. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci USA 2001; 98:14613–14618 [View Article] [PubMed]
    [Google Scholar]
  25. Déziel E, Lépine F, Milot S, He J, Mindrinos MN et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 2004; 101:1339–1344 [View Article] [PubMed]
    [Google Scholar]
  26. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 2002; 184:6472–6480 [View Article] [PubMed]
    [Google Scholar]
  27. Dulcey CE, Dekimpe V, Fauvelle DA, Milot S, Groleau MC et al. The end of an old hypothesis: the pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids. Chem Biol 2013; 20:1481–1491 [View Article] [PubMed]
    [Google Scholar]
  28. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003; 22:3803–3815 [View Article] [PubMed]
    [Google Scholar]
  29. Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 2003; 185:2066–2079 [View Article] [PubMed]
    [Google Scholar]
  30. Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 2005; 55:998–1014 [View Article] [PubMed]
    [Google Scholar]
  31. Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 2006; 296:73–81 [View Article] [PubMed]
    [Google Scholar]
  32. Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG. Evidence for direct control of virulence and defense gene circuits by the Pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci Rep 2016; 6:34083 [View Article] [PubMed]
    [Google Scholar]
  33. Duan K, Surette MG. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 2007; 189:4827–4836 [View Article] [PubMed]
    [Google Scholar]
  34. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003; 185:2080–2095 [View Article] [PubMed]
    [Google Scholar]
  35. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 1996; 21:1137–1146 [View Article] [PubMed]
    [Google Scholar]
  36. Xiao G, He J, Rahme LG. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 2006; 152:1679–1686 [View Article] [PubMed]
    [Google Scholar]
  37. Gambello MJ, Kaye S, Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 1993; 61:1180–1184 [View Article] [PubMed]
    [Google Scholar]
  38. Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW et al. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 1993; 12:2477–2482 [View Article] [PubMed]
    [Google Scholar]
  39. Ochsner UA, Koch AK, Fiechter A, Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 1994; 176:2044–2054 [View Article] [PubMed]
    [Google Scholar]
  40. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 2003; 50:29–43 [View Article] [PubMed]
    [Google Scholar]
  41. Garge S, Azimi S, Diggle SP. A simple mung bean infection model for studying the virulence of Pseudomonas aeruginosa. Microbiology 2018; 164:764–768 [View Article]
    [Google Scholar]
  42. Vasquez-Rifo A, Cook J, McEwan DL, Shikara D, Ausubel FM et al. ABCDs of the relative contributions of Pseudomonas aeruginosa quorum sensing systems to virulence in diverse nonvertebrate hosts. mBio 2022; 13e0041722 [View Article]
    [Google Scholar]
  43. Jones JDG, Dangl JL. The plant immune system. Nature 2006; 444:323–329 [View Article]
    [Google Scholar]
  44. Hammerschmidt R. PHYTOALEXINS: what have we learned after 60 years?. Annu Rev Phytopathol 1999; 37:285–306 [View Article] [PubMed]
    [Google Scholar]
  45. Glazebrook J, Zook M, Mert F, Kagan I, Rogers EE et al. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 1997; 146:381–392 [View Article]
    [Google Scholar]
  46. Rogers EE, Glazebrook J, Ausubel FM. Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions. Mol Plant Microbe Interact 1996; 9:748–757 [View Article]
    [Google Scholar]
  47. Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC. Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae. Plant Physiol 1992; 98:1304–1309
    [Google Scholar]
  48. Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010; 22:973990 [View Article]
    [Google Scholar]
  49. Pedras MSC, Adio AM, Suchy M, Okinyo DPO, Zheng Q-A et al. Detection, characterization and identification of crucifer phytoalexins using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J Chromatogr A 2006; 1133:172–183 [View Article]
    [Google Scholar]
  50. Pedras MS, Zheng QA, Gadagi RS, Rimmer SR. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochem 2008; 69:894–910 [View Article]
    [Google Scholar]
  51. Pedras MSC, Zheng Q-A, Strelkov S. Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae: phytoalexins and phytoanticipins. J Agric Food Chem 2008; 56:9949–9961 [View Article] [PubMed]
    [Google Scholar]
  52. Cook J, Douglas GM, Zhang J, Glick BR, Langille MGI et al. Transcriptomic profiling of Brassica napus responses to Pseudomonas aeruginosa. Innate Immun 2021; 27:143–157 [View Article]
    [Google Scholar]
  53. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 2006; 7:R90 [View Article] [PubMed]
    [Google Scholar]
  54. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 2006; 103:2833–2838 [View Article] [PubMed]
    [Google Scholar]
  55. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG et al. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 2004; 134:320–331 [View Article] [PubMed]
    [Google Scholar]
  56. Gao J, Wang Y, Wang CW, Lu BH. First report of bacterial root rot of ginseng caused by Pseudomonas aeruginosa in China. Plant Dis 2014; 98:1577 [View Article] [PubMed]
    [Google Scholar]
  57. Limmer S, Haller S, Drenkard E, Lee J, Yu S et al. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci USA 2011; 108:17378–17383 [View Article] [PubMed]
    [Google Scholar]
  58. Høyland-Kroghsbo NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc Natl Acad Sci USA 2017; 114:131–135 [View Article] [PubMed]
    [Google Scholar]
  59. Haller S, Franchet A, Hakkim A, Chen J, Drenkard E et al. Quorum-sensing regulator RhlR but not its autoinducer RhlI enables Pseudomonas to evade opsonization. EMBO Rep 2018; 19:e44880 [View Article] [PubMed]
    [Google Scholar]
  60. Cugini C, Morales DK, Hogan DA. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology 2010; 156:3096–3107 [View Article] [PubMed]
    [Google Scholar]
  61. Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010; 11:395 [View Article] [PubMed]
    [Google Scholar]
  62. Zhu A, Wang A, Zhang Y, Dennis ES, Peacock WJ et al. Early establishment of photosynthesis and auxin biosynthesis plays a key role in early biomass heterosis in Brassica napus (Canola) hybrids. Plant Cell Physiol 2020; 61:1134–1143 [View Article] [PubMed]
    [Google Scholar]
  63. McClerklin SA, Lee SG, Harper CP, Nwumeh R, Jez JM et al. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLoS Pathog 2018; 14:e1006811 [View Article] [PubMed]
    [Google Scholar]
  64. Lu CD, Itoh Y, Nakada Y, Jiang Y. Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2002; 184:3765–3773 [View Article] [PubMed]
    [Google Scholar]
  65. Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 2006; 61:1308–1321 [View Article] [PubMed]
    [Google Scholar]
  66. de Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 2009; 11:279–288 [View Article] [PubMed]
    [Google Scholar]
  67. Borah SN, Goswami D, Lahkar J, Sarma HK, Khan MR et al. Rhamnolipid produced by Pseudomonas aeruginosa SS14 causes complete suppression of wilt by Fusarium oxysporum f. sp. pisi in Pisum sativum. BioControl 2014; 60:375–385 [View Article]
    [Google Scholar]
  68. Monnier N, Furlan A, Botcazon C, Dahi A, Mongelard G et al. Rhamnolipids from Pseudomonas aeruginosa are elicitors triggering Brassica napus protection against Botrytis cinerea without physiological disorders. Front Plant Sci 2018; 9:1170 [View Article]
    [Google Scholar]
  69. Fu J, Wang S. Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci 2011; 2:74 [View Article] [PubMed]
    [Google Scholar]
  70. Thomashow LS, Weller DM, Bonsall RF, Pierson LS. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 1990; 56:908–912 [View Article] [PubMed]
    [Google Scholar]
  71. Thomashow LS, Weller DM. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 1988; 170:3499–3508 [View Article] [PubMed]
    [Google Scholar]
  72. Chin-A-Woeng TF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 2000; 13:1340–1345 [View Article] [PubMed]
    [Google Scholar]
  73. Baur R, Städler E, Monde K, Takasugi M. Phytoalexins from Brassica (Cruciferae) as oviposition stimulants for the cabbage root fly, Delia radicum. Chemoecology 1998; 8:163–168 [View Article]
    [Google Scholar]
  74. Pedras MSC, Zheng Q, Sarma-Mamillapalle VK. The phytoalexins from Brassicaceae: structure, biological activity, synthesis and biosynthesis. Nat Prod Commun 2007; 2:319–330 [View Article]
    [Google Scholar]
  75. Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ et al. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natl Acad Sci USA 1999; 96:13583–13588 [View Article] [PubMed]
    [Google Scholar]
  76. Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE et al. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 2007; 19:2039–2052 [View Article] [PubMed]
    [Google Scholar]
  77. Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J. PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 1998; 10:1021–1030 [View Article] [PubMed]
    [Google Scholar]
  78. Zhou N, Tootle TL, Glazebrook J. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 1999; 11:2419–2428 [View Article] [PubMed]
    [Google Scholar]
  79. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D et al. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 2008; 1:423–445 [View Article] [PubMed]
    [Google Scholar]
  80. Felix G, Duran JD, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 1999; 18:265–276 [View Article] [PubMed]
    [Google Scholar]
  81. Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 2008; 31:1497–1509 [View Article] [PubMed]
    [Google Scholar]
  82. Fang J, Reichelt M, Kai M, Schneider B. Metabolic profiling of lignans and other secondary metabolites from rapeseed (Brassica napus L.). J Agric Food Chem 2012; 60:10523–10529 [View Article] [PubMed]
    [Google Scholar]
  83. Ortori CA, Dubern J-F, Chhabra SR, Cámara M, Hardie K et al. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem 2011; 399:839–850 [View Article] [PubMed]
    [Google Scholar]
  84. Kennedy RK, Naik PR, Veena V, Lakshmi BS, Lakshmi P et al. 5-Methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact 2015; 231:71–82 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001212
Loading
/content/journal/micro/10.1099/mic.0.001212
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error