1887

Abstract

and like organisms (BALOs) are Gram-negative obligate predators of other bacteria in a range of environments. The recent discovery of BALOs in the circulatory system of cultured spiny lobster warrants more investigation. We used a combination of co-culture agar and broth assays and transmission electron microscopy to show a sp. strain Hbv preyed upon the model prey bacterium sp. strain Vib. The haemolymph microbiome of juvenile was characterised following injection of phosphate buffered saline (control) or prey and/or predator bacteria for 3 d. The predator Hbv had no effect on survival compared to the control after 3 d. However, when compared to the prey only treatment group, lobsters injected with both prey and predator showed significantly lower abundance of genus in the haemolymph bacterial community composition. This study indicates that predatory bacteria are not pathogenic and may assist in controlling microbial population growth in the haemolymph of lobsters.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001113
2021-11-30
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/11/mic001113.html?itemId=/content/journal/micro/10.1099/mic.0.001113&mimeType=html&fmt=ahah

References

  1. Koval SF, Williams HN, Stine OC. Reclassification of Bacteriovorax marinus as Halobacteriovorax marinus gen. nov., comb. nov. and Bacteriovorax litoralis as Halobacteriovorax litoralis comb. nov.; description of Halobacteriovoraceae fam. nov. in the class Deltaproteobacteria. Int J Syst Evol Microbiol 2015; 65:593–597 [View Article] [PubMed]
    [Google Scholar]
  2. Rotem O, Pasternak Z, Jurkevitch E. The genus Bdellovibrio and like organisms. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. eds The Prokaryotes – Deltaproteobacteria and Epsilonproteobacteria Berlin Heidelberg: Springer-Verlag; 2014 pp 3–17
    [Google Scholar]
  3. Schade SZ, Adler J, Ris H. How bacteriophage chi attacks motile bacteria. J Virol 1967; 1:599–609 [View Article] [PubMed]
    [Google Scholar]
  4. Matz C, Jürgens K. High motility reduces grazing mortality of planktonic bacteria. Appl Environ Microbiol 2005; 71:921–929 [View Article] [PubMed]
    [Google Scholar]
  5. Fenton AK, Kanna M, Woods RD, Aizawa S-I, Sockett RE. Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J Bacteriol 2010; 192:6329–6335 [View Article] [PubMed]
    [Google Scholar]
  6. Amat AS, Torrella F. Isolation and characterization of marine and salt pond halophylic bdellovibrios. Can J Microbiol 1989; 35:771–778 [View Article]
    [Google Scholar]
  7. Davidov Y, Friedjung A, Jurkevitch E. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol 2006; 8:1667–1673 [View Article] [PubMed]
    [Google Scholar]
  8. Chu WH, Zhu W. Isolation of Bdellovibrio as biological therapeutic agents used for the treatment of Aeromonas hydrophila infection in fish. Zoonoses Public Health 2010; 57:258–264 [View Article] [PubMed]
    [Google Scholar]
  9. Wen C-Q, Lai X-T, Xue M, Huang Y-L, Li H-X et al. Molecular typing and identification of Bdellovibrio-and-like organisms isolated from seawater shrimp ponds and adjacent coastal waters. J Appl Microbiol 2009; 106:1154–1162 [View Article] [PubMed]
    [Google Scholar]
  10. Kelley JI, Williams HN. Bdellovibrios in Callinectus sapidus, the blue crab. Appl Environ Microbiol 1992; 58:1408–1410 [View Article] [PubMed]
    [Google Scholar]
  11. Pineiro SA, Stine OC, Chauhan A, Steyert SR, Smith R et al. Global survey of diversity among environmental saltwater Bacteriovoracaceae. Environ Microbiol 2007; 9:2441–2450 [View Article] [PubMed]
    [Google Scholar]
  12. Cao H, He S, Wang H, Hou S, Lu L et al. Bdellovibrios, potential biocontrol bacteria against pathogenic Aeromonas hydrophila. Vet Microbiol 2012; 154:413–418 [View Article] [PubMed]
    [Google Scholar]
  13. Cao H, Hou S, He S, Lu L, Yang X. Identification of a Bacteriovorax sp. isolate as a potential biocontrol bacterium against snakehead fish-pathogenic Aeromonas veronii. J Fish Dis 2014; 37:283–289 [View Article] [PubMed]
    [Google Scholar]
  14. Cao H, He S, Lu L, Yang X, Chen B. Identification of a Proteus penneri isolate as the causal agent of red body disease of the cultured white shrimp Penaeus vannamei and its control with Bdellovibrio bacteriovorus. Antonie van Leeuwenhoek 2014; 105:423–430 [View Article] [PubMed]
    [Google Scholar]
  15. Cao H, An J, Zheng W, He S. Vibrio cholerae pathogen from the freshwater-cultured whiteleg shrimp Penaeus vannamei and control with Bdellovibrio bacteriovorus. J Invertebr Pathol 2015; 130:13–20 [View Article] [PubMed]
    [Google Scholar]
  16. Damron FH, Barbier M. Predatory bacteria: living antibiotics, biocontrol agents, or probiotics?. PDJ 2013; 1:10–15 [View Article]
    [Google Scholar]
  17. Ooi MC, Goulden EF, Smith GG, Bridle AR. Haemolymph microbiome of the cultured spiny lobster Panulirus ornatus at different temperatures. Sci Rep 2019; 9:1677 [View Article] [PubMed]
    [Google Scholar]
  18. Ooi MC, Goulden EF, Smith GG, Nowak BF, Bridle AR. Developmental and gut-related changes to microbiomes of the cultured juvenile spiny lobster Panulirus ornatus. FEMS Microbiol Ecol 2017; 93:fix159
    [Google Scholar]
  19. Cornick JW, Stewart JE. Microorganisms Isolated from the Hemolymph of the Lobster (Homarus americanus). J Fish Res Bd Can 1966; 23:1451–1454 [View Article]
    [Google Scholar]
  20. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 2008; 274:1–14 [View Article]
    [Google Scholar]
  21. Le Moullac G, Le Groumellec M, Ansquer D, Froissard S, Levy P et al. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostrisin relation with the moult cycle: protection against vibriosis. Fish & Shellfish Immunology 1997; 7:227–234 [View Article]
    [Google Scholar]
  22. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998; 64:795–799 [View Article] [PubMed]
    [Google Scholar]
  23. Rodríguez-Ramos T, Carpio Y, Ramos L, Pons T, Farnós O et al. New aspects concerning to the characterization and the relationship with the immune response in vivo of the spiny lobster Panulirus argus nitric oxide synthase. Nitric Oxide 2011; 25:396–406 [View Article] [PubMed]
    [Google Scholar]
  24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article] [PubMed]
    [Google Scholar]
  25. White J, Fricke WF, White J, Arze C, Matalka M et al. CloVR-16S: Phylogenetic microbial community composition analysis based on 16S ribosomal RNA amplicon sequencing – standard operating procedure, version 1.0. Nature Precedings 20111–9 [View Article]
    [Google Scholar]
  26. Dhariwal A, Chong J, Habib S, King IL, Agellon LB et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 2017; 45:W180–W188 [View Article] [PubMed]
    [Google Scholar]
  27. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31:814–821 [View Article] [PubMed]
    [Google Scholar]
  28. Piccolo BD, Wankhade UD, Chintapalli SV, Bhattacharyya S, Chunqiao L et al. Dynamic assessment of microbial ecology (DAME): a web app for interactive analysis and visualization of microbial sequencing data. Bioinformatics 2018; 34:1050–1052 [View Article]
    [Google Scholar]
  29. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. teractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 2015; 16:169 [View Article] [PubMed]
    [Google Scholar]
  30. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S et al. Examining the efficacy of intravenous administration of predatory bacteria in rats. Sci Rep 2017; 7:1864 [View Article] [PubMed]
    [Google Scholar]
  31. Willis AR, Moore C, Mazon-Moya M, Krokowski S, Lambert C et al. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr Biol 2016; 26:3343–3351 [View Article] [PubMed]
    [Google Scholar]
  32. Shanks RMQ, Davra VR, Romanowski EG, Brothers KM, Stella NA et al. An eye to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular infections. PLoS One 2013; 8:e66723 [View Article]
    [Google Scholar]
  33. Welsh RM, Zaneveld JR, Rosales SM, Payet JP, Burkepile DE et al. Bacterial predation in a marine host-associated microbiome. ISME J 2016; 10:1540–1544 [View Article] [PubMed]
    [Google Scholar]
  34. Wen C, Xue M, Liang H, Zhou S. Evaluating the potential of marine Bacteriovorax sp. DA5 as a biocontrol agent against vibriosis in Litopenaeus vannamei larvae. Vet Microbiol 2014; 173:84–91 [View Article] [PubMed]
    [Google Scholar]
  35. Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A et al. Review: Immunity mechanisms in crustaceans. Innate Immun 2009; 15:179–188 [View Article] [PubMed]
    [Google Scholar]
  36. Mahmoud KK, Koval SF. Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio. Microbiology (Reading) 2010; 156:1040–1051 [View Article] [PubMed]
    [Google Scholar]
  37. Evans KJ, Lambert C, Sockett RE. Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol 2007; 189:4850–4859 [View Article] [PubMed]
    [Google Scholar]
  38. Richards GP, Fay JP, Dickens KA, Parent MA, Soroka DS et al. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters. Appl Environ Microbiol 2012; 78:7455–7466 [View Article] [PubMed]
    [Google Scholar]
  39. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In Rosenberg E. eds The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin Heidelberg: Springer-Verlag; 2014 pp 439–512
    [Google Scholar]
  40. Wietz M, Mansson M, Gotfredsen CH, Larsen TO, Gram L. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs 2010; 8:2946–2960 [View Article] [PubMed]
    [Google Scholar]
  41. Goulden EF, Hall MR, Pereg LL, Høj L. Identification of an antagonistic probiotic combination protecting ornate spiny lobster (Panulirus ornatus) larvae against Vibrio owensii infection. PLoS One 2012; 7:e39667 [View Article] [PubMed]
    [Google Scholar]
  42. Doepke H, Herrmann K, Schuett C. Endobacteria in the tentacles of selected cnidarian species and in the cerata of their nudibranch predators. Helgol Mar Res 2011; 66:43–50 [View Article]
    [Google Scholar]
  43. Du Z, Zhang W, Xia H, G, Chen G. Isolation and diversity analysis of heterotrophic bacteria associated with sea anemones. Acta Oceanol Sin 2010; 29:62–69 [View Article]
    [Google Scholar]
  44. Bernardet J-F, Nakagawa Y. An introduction to the family Flavobacteriaceae. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds The Prokaryotes vol. 7 New York: Springer-Verlag; 2006 pp 455–480
    [Google Scholar]
  45. Habib C, Houel A, Lunazzi A, Bernardet J-F, Olsen AB et al. Multilocus sequence analysis of the marine bacterial genus Tenacibaculum suggests parallel evolution of fish pathogenicity and endemic colonization of aquaculture systems. Appl Environ Microbiol 2014; 80:5503–5514 [View Article] [PubMed]
    [Google Scholar]
  46. Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A et al. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One 2013; 8:e61608 [View Article] [PubMed]
    [Google Scholar]
  47. Kongrueng J, Pimonsri Mitraparp-arthorn P, Bangpanwimon K, Robins W, Vuddhakul V et al. Isolation of Bdellovibrio and like organisms and potential to reduce acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Dis Aquat Org 2017; 124:223–232 [View Article]
    [Google Scholar]
  48. Li H, Chen C, Sun Q, Liu R, Cai J. Bdellovibrio and like organisms enhanced growth and survival of Penaeus monodon and altered bacterial community structures in its rearing water. Appl Environ Microbiol 2014; 80:6346–6354 [View Article] [PubMed]
    [Google Scholar]
  49. Xu Q, Li J, Lin Q, Wang Q. Effects of Bdellovibrio bacteriovorus and Rhodotorula glutinis on growth and non-specific immune competence of Fenneropenaeus chinensis. Mar Fish Res 2007; 28:42–47
    [Google Scholar]
  50. Williams HN, Lymperopoulou DS, Athar R, Chauhan A, Dickerson TL et al. Halobacteriovorax, an underestimated predator on bacteria: potential impact relative to viruses on bacterial mortality. ISME J 2016; 10:491–499 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001113
Loading
/content/journal/micro/10.1099/mic.0.001113
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error