- Volume 167, Issue 11, 2021
Volume 167, Issue 11, 2021
- Editorials
-
- Antimicrobials and AMR
-
-
-
Cell-free supernatants produced by lactic acid bacteria reduce Salmonella population in vitro
The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.
-
-
-
-
Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic
Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr −1, –1.5, −2, –3, −3.2 or −5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.
-
- Cell and Developmental Microbiology
-
-
-
The primary transcriptome of hormogonia from a filamentous cyanobacterium defined by cappable-seq
More LessHormogonia are motile filaments produced by many filamentous cyanobacteria that function in dispersal, phototaxis and the establishment of nitrogen-fixing symbioses. The gene regulatory network promoting hormogonium development is initiated by the hybrid histidine kinase HrmK, which in turn activates a sigma factor cascade consisting of SigJ, SigC and SigF. In this study, cappable-seq was employed to define the primary transcriptome of developing hormogonia in the model filamentous cyanobacterium Nostoc punctiforme ATCC 29133 in both the wild-type, and sigJ, sigC and sigF mutant strains 6 h post-hormogonium induction. A total of 1544 transcriptional start sites (TSSs) were identified that are associated with protein-coding genes and are expressed at levels likely to lead to biologically relevant transcripts in developing hormogonia. TSS expression among the sigma-factor deletion strains was highly consistent with previously reported gene expression levels from RNAseq experiments, and support the current working model for the role of these genes in hormogonium development. Analysis of SigJ-dependent TSSs corroborated the presence of the previously identified J-Box in the −10 region of SigJ-dependent promoters. Additionally, the data presented provides new insights on sequence conservation within the −10 regions of both SigC- and SigF-dependent promoters, and demonstrates that SigJ and SigC coordinate complex co-regulation not only of hormogonium-specific genes at different loci, but within an individual operon. As progress continues on defining the hormogonium gene regulatory network, this data set will serve as a valuable resource.
-
-
- Microbial Interactions and Communities
-
-
-
Influence of tissue and geographic locality on culturable endophytic bacteria of Atractylodes macrocephala
More LessThe endophytic bacterial community and their diversity are closely related to the host’s growth and development. This paper explores the culturable endophytic bacteria in the stems, leaves, roots and rhizomes of Atractylodes macrocephala (AM) of four localities (Yuqian, Wenxian, Pan’an and Pingjiang) and the potential correlation between the bacteria and plant bioactive compounds. A total of 118 endophytic bacteria belonging to 3 phyla, 5 classes, 11 orders, 26 families and 48 genera were isolated and identified from the four AM tissues. Among them, Bacillus was the dominant genus. In AM, the tissue type and locality influenced the endophytic bacterial community. Approximately 29.7 and 28.8% of the endophytic bacteria exhibited tissue specificity and geographic specificity, respectively. Furthermore, high-performance liquid chromatography revealed that the sesquiterpenoid (atractylenolide I, atractylenolide Ⅱ and atractylon) content was more in the rhizomes of Wenxian than in those of Pingjiang, Yuqian and Pan’an. The multiple linear regression was used to screen the bacterial strains related to the bioactive compounds of AM. The relative frequency of Microbacterium positively correlated with atractylenolide I and atractylon content in AM but negatively correlated with atractylenolide Ⅱ content. The study also provides a theoretical framework for future research on endophytic bacteria as alternative sources of secondary plant metabolites.
-
-
-
-
Predatory bacteria in the haemolymph of the cultured spiny lobster Panulirus ornatus
More LessBdellovibrio and like organisms (BALOs) are Gram-negative obligate predators of other bacteria in a range of environments. The recent discovery of BALOs in the circulatory system of cultured spiny lobster P. ornatus warrants more investigation. We used a combination of co-culture agar and broth assays and transmission electron microscopy to show a Halobacteriovorax sp. strain Hbv preyed upon the model prey bacterium Vibrio sp. strain Vib. The haemolymph microbiome of juvenile P. ornatus was characterised following injection of phosphate buffered saline (control) or prey and/or predator bacteria for 3 d. The predator Hbv had no effect on survival compared to the control after 3 d. However, when compared to the prey only treatment group, lobsters injected with both prey and predator showed significantly lower abundance of genus Vibrio in the haemolymph bacterial community composition. This study indicates that predatory bacteria are not pathogenic and may assist in controlling microbial population growth in the haemolymph of lobsters.
-
- Microbial Physiology, Biochemistry and Metabolism
-
-
-
The extracellular β-glucosidase BGL2 has two variants with different molecular sizes and hydrolytic activities in the stipe or pilei of Coprinopsis cinerea
Two variants of extracellular β-glucosidase (BGL2) were purified from the stipe and pilei of Coprinopsis cinerea. In the stipe, BGL2 was a monomeric protein with an apparent molecular mass of approximately 220 kDa, representing a mature full-length peptide of BGL2. However, in the pilei, the apparent molecular mass of BGL2 was only approximately 120 kDa, consisting of the 60 kDa N-terminal fragment and 55 kDa C-terminal fragment. The hydrolytic activities of BGL2 purified from the pilei were higher than those of BGL2 purified from the stipe. No mRNA splice variants of bgl2 were detected. Therefore, the different variants of BGL2 in the stipe and pilei were not formed by differential RNA splicing. Furthermore, in vitro experiments showed that full-length BGL2 could be cleaved by endogenous proteases from pilei or commercial trypsin at a similar site to form an oligomeric protein consisting of the N-terminal fragment and C-terminal fragment similar to BGL2 from pilei. The hydrolytic activity of BGL2 increased after cleavage by those proteases in vitro. We conclude that the 120 kDa variant of BGL2 in the pilei of C. cinerea is formed by posttranslational proteolytic cleavage. Posttranslational proteolytic cleavage is an efficient way to regulate the activity of BGL2 to adapt to the needs of different physiological functions in the elongation stipe and expansion pilei of C. cinerea.
-
-
-
-
Key carboxylate residues for iron transit through the prokaryotic ferritin SynFtn
More LessFerritins are proteins forming 24meric rhombic dodecahedral cages that play a key role in iron storage and detoxification in all cell types. Their function requires the transport of Fe2+ from the exterior of the protein to buried di-iron catalytic sites, known as ferroxidase centres, where Fe2+ is oxidized to form Fe3+-oxo precursors of the ferritin mineral core. The route of iron transit through animal ferritins is well understood: the Fe2+ substrate enters the protein via channels at the threefold axes and conserved carboxylates on the inner surface of the protein cage have been shown to contribute to transient binding sites that guide Fe2+ to the ferroxidase centres. The routes of iron transit through prokaryotic ferritins are less well studied but for some, at least, there is evidence that channels at the twofold axes are the major route for Fe2+ uptake. SynFtn, isolated from the cyanobacterium Synechococcus CC9311, is an atypical prokaryotic ferritin that was recently shown to take up Fe2+ via its threefold channels. However, the transfer site carboxylate residues conserved in animal ferritins are absent, meaning that the route taken from the site of iron entry into SynFtn to the catalytic centre is yet to be defined. Here, we report the use of a combination of site-directed mutagenesis, absorbance-monitored activity assays and protein crystallography to probe the effect of substitution of two residues potentially involved in this pathway. Both Glu141 and Asp65 play a role in guiding the Fe2+ substrate to the ferroxidase centre. In the absence of Asp65, routes for Fe2+ to, and Fe3+ exit from, the ferroxidase centre are affected resulting in inefficient formation of the mineral core. These observations further define the iron transit route in what may be the first characterized example of a new class of ferritins peculiar to cyanobacteria.
-
-
-
At the metal–metabolite interface in Aspergillus fumigatus: towards untangling the intersecting roles of zinc and gliotoxin
Cryptic links between apparently unrelated metabolic systems represent potential new drug targets in fungi. Evidence of such a link between zinc and gliotoxin (GT) biosynthesis in Aspergillus fumigatus is emerging. Expression of some genes of the GT biosynthetic gene cluster gli is influenced by the zinc-dependent transcription activator ZafA, zinc may relieve GT-mediated fungal growth inhibition and, surprisingly, GT biosynthesis is influenced by zinc availability. In A. fumigatus, dithiol gliotoxin (DTG), which has zinc-chelating properties, is converted to either GT or bis-dethiobis(methylthio)gliotoxin (BmGT) by oxidoreductase GliT and methyltransferase GtmA, respectively. A double deletion mutant lacking both GliT and GtmA was previously observed to be hypersensitive to exogenous GT exposure. Here we show that compared to wild-type exposure, exogenous GT and the zinc chelator N,N,N′,N′-tetrakis(2-pyridinylmethyl)−1,2-ethanediamine (TPEN) inhibit A. fumigatus ΔgliTΔgtmA growth, specifically under zinc-limiting conditions, which can be reversed by zinc addition. While GT biosynthesis is evident in zinc-depleted medium, addition of zinc (1 µM) suppressed GT and activated BmGT production. In addition, secretion of the unferrated siderophore, triacetylfusarinine C (TAFC), was evident by A. fumigatus wild-type (at >5 µM zinc) and ΔgtmA (at >1 µM zinc) in a low-iron medium. TAFC secretion suggests that differential zinc-sensing between both strains may influence fungal Fe3+ requirement. Label-free quantitative proteomic analysis of both strains under equivalent differential zinc conditions revealed protein abundance alterations in accordance with altered metabolomic observations, in addition to increased GliT abundance in ΔgtmA at 5 µM zinc, compared to wild-type, supporting a zinc-sensing deficiency in the mutant strain. The relative abundance of a range of oxidoreductase- and secondary metabolism-related enzymes was also evident in a zinc- and strain-dependent manner. Overall, we elaborate new linkages between zinc availability, natural product biosynthesis and oxidative stress homeostasis in A. fumigatus.
-
-
-
Membrane lipid and osmolyte readjustment in the alkaliphilic micromycete Sodiomyces tronii under cold, heat and osmotic shocks
More LessPreviously, we showed for the first time that alkaliphilic fungi, in contrast to alkalitolerant fungi, accumulated trehalose under extremely alkaline conditions, and we have proposed its key role in alkaliphilia. We propose that high levels of trehalose in the mycelium of alkaliphiles may promote adaptation not only to alkaline conditions, but also to other stressors. Therefore, we studied changes in the composition of osmolytes, and storage and membrane lipids under the action of cold (CS), heat (HS) and osmotic (OS) shocks in the obligate alkaliphilic micromycete Sodiomyces tronii. During adaptation to CS, an increase in the degree of unsaturation of phospholipids was observed while the composition of osmolytes, membrane and storage lipids remained the same. Under HS conditions, a twofold increase in the level of trehalose and an increase in the proportion of phosphatidylethanolamines were observed against the background of a decrease in the proportion of phosphatidic acids. OS was accompanied by a decrease in the amount of membrane lipids, while their ratio remained unchanged, and an increase in the level of polyols (arabitol and mannitol) in the fungal mycelium, which suggests their role for adaptation to OS. Thus, the observed consistency of the composition of membrane lipids suggests that trehalose can participate in adaptation not only to extremely alkaline conditions, but also to other stressors – HS, CS and OS. Taken together, the data obtained indicate the adaptability of the fungus to the action of various stressors, which can point to polyextremotolerance.
-
- Microbial Virulence and Pathogenesis
-
-
-
A functional menadione biosynthesis pathway is required for capsule production by Staphylococcus aureus
More LessStaphylococcus aureus is a major human pathogen that utilises a wide array of pathogenic and immune evasion strategies to cause disease. One immune evasion strategy, common to many bacterial pathogens, is the ability of S. aureus to produce a capsule that protects the bacteria from several aspects of the human immune system. To identify novel regulators of capsule production by S. aureus, we applied a genome wide association study (GWAS) to a collection of 300 bacteraemia isolates that represent the two major MRSA clones in UK and Irish hospitals: CC22 and CC30. One of the loci associated with capsule production, the menD gene, encodes an enzyme critical to the biosynthesis of menadione. Mutations in this gene that result in menadione auxotrophy induce the slow growing small-colony variant (SCV) form of S. aureus often associated with chronic infections due to their increased resistance to antibiotics and ability to survive inside phagocytes. Utilising such an SCV, we functionally verified this association between menD and capsule production. Although the clinical isolates with polymorphisms in the menD gene in our collections had no apparent growth defects, they were more resistant to gentamicin when compared to those with the wild-type menD gene. Our work suggests that menadione is involved in the production of the S. aureus capsule, and that amongst clinical isolates polymorphisms exist in the menD gene that confer the characteristic increased gentamicin resistance, but not the major growth defect associated with SCV phenotype.
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)