1887

Abstract

Arginase is the only fungal ureohydrolase that is well documented in the literature. More recently, a novel route for agmatine catabolism in Aspergillus niger involving another ureohydrolase, 4-guanidinobutyrase (GBase), was reported. We present here a detailed characterization of A. niger GBase – the first fungal (and eukaryotic) enzyme to be studied in detail. A. niger GBase is a homohexamer with a native molecular weight of 336 kDa and an optimal pH of 7.5. Unlike arginase, the Mn enzyme from the same fungus, purified GBase protein is associated with Zn ions. A sensitive fluorescence assay was used to determine its kinetic parameters. GBase acted 25 times more efficiently on 4-guanidinobutyrate (GB) than 3-guanidinopropionic acid (GP). The Km for GB was 2.7±0.4 mM, whereas for GP it was 53.7±0.8 mM. While GB was an efficient nitrogen source, A. niger grew very poorly on GP. Constitutive expression of GBase favoured fungal growth on GP, indicating that GP catabolism is limited by intracellular GBase levels in A. niger. The absence of a specific GPase and the inability of GP to induce GBase expression confine the fungal growth on GP. That GP is a poor substrate for GBase and a very poor nitrogen source for A. niger offers an opportunity to select GBase specificity mutations. Further, it is now possible to compare two distinct ureohydrolases, namely arginase and GBase, from the same organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000782
2019-02-26
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/4/396.html?itemId=/content/journal/micro/10.1099/mic.0.000782&mimeType=html&fmt=ahah

References

  1. Irreverre F, Evans RL, Hayden AR, Silber R. Occurrence of gamma-guanidinobutyric acid. Nature 1957; 180:704–705 [View Article][PubMed]
    [Google Scholar]
  2. Pisano JJ, Abraham D, Udenfriend S. Biosynthesis and disposition of γ-guanidinobutyric acid in mammalian tissues. Arch Biochem Biophys 1963; 100:323–329 [View Article]
    [Google Scholar]
  3. Mora J, Tarrab R, Martuscelli J, Soberon G. Characteristics of arginase from ureotelic and non-ureotelic animals. Biochem J 1965; 96:588–594 [View Article][PubMed]
    [Google Scholar]
  4. Baret R, Mourgue M, Broc A. Research on gamma-guanidinobutyrate ureohydrolase. I. Isolation and purification of the enzyme present in hepatic and renal tissues of the ray (Raia clavata Lin.). Bull Soc Chim Biol 1967; 49:25–42
    [Google Scholar]
  5. Porembska Z, Gasiorowska I, Mochnacka I. Isolation of arginase and guanidinobutyrate ureohydrolase from hepatopancreas of Helix pomatia. Acta Biochim Pol 1968; 15:171–181[PubMed]
    [Google Scholar]
  6. Campo ML, Fuentes JM, Soler G. An arginine regulated gamma-guanidobutyrate ureahydrolase from tench liver (Tinca tinca L.). Arch Int Physiol Biochim Biophys 1992; 100:55–60[PubMed]
    [Google Scholar]
  7. Chou CS, Rodwell VW. Metabolism of basic amino acids in Pseudomonas putida. -guanidinobutyrate amidinohydrolase. J Biol Chem 1972; 247:4486–4490[PubMed]
    [Google Scholar]
  8. Nakada Y, Itoh Y. Characterization and regulation of the gbuA gene, encoding guanidinobutyrase in the arginine dehydrogenase pathway of Pseudomonas aeruginosa PAO1. J Bacteriol 2002; 184:3377–3384 [View Article][PubMed]
    [Google Scholar]
  9. Lee SJ, Kim DJ, Kim HS, Lee BI, Yoon HJ et al. Crystal structures of Pseudomonas aeruginosa guanidinobutyrase and guanidinopropionase, members of the ureohydrolase superfamily. J Struct Biol 2011; 175:329–338 [View Article][PubMed]
    [Google Scholar]
  10. Yorifuji T, Shimizu E, Hirata H, Imada K, Katsumi T et al. Guanidinobutyrase for l-arginine degradation in Brevibacterium helvolum. Biosci Biotechnol Biochem 1992; 56:773–777 [View Article][PubMed]
    [Google Scholar]
  11. Kaneoke M, Shiota K, Kusunose M, Shimizu E, Yorifuji T. Function of the arginine oxygenase pathway in utilization of l-arginine-related compounds in Arthrobacter globiformis and Brevibacterium helvolum. Biosci Biotechnol Biochem 1993; 57:814–820 [View Article]
    [Google Scholar]
  12. Yorifuji T, Kaneoke M, Okazaki T, Shimizu E. Degradation of 2-ketoarginine by guanidinobutyrase in arginine aminotransferase pathway of Brevibacterium helvolum. Biosci Biotechnol Biochem 1995; 59:512–513 [View Article][PubMed]
    [Google Scholar]
  13. Arakawa N, Igarashi M, Kazuoka T, Oikawa T. D-Arginase of arthrobacter sp. kuj 8602: characterization and its identity with zn2+-guanidinobutyrase. J Biochem 2003; 133:33–42 [View Article]
    [Google Scholar]
  14. van Thoai N, Thome-Beau F, Olomucki A. Induction et spécificité des enzymes de la nouvelle voie catabolique de l'arginine. Biochim Biophys Acta 1966; 115:73–80 [View Article]
    [Google Scholar]
  15. Brunel A, Brunel-Capelle G, Miquel A. L-Arginine-Ureohydrolase Binduitedela. arginase), dela γ-guanidinobutyrique-ureohydrolase et de la guanidinoacetique-ureohydrolase (glycocyaminase) chez Penicillium roqueforti. C R Acad Sci Paris 1967; 264:2777–2780
    [Google Scholar]
  16. Brunel-Capelle G, Brunel A, Bailly-Fenech G. Sur la γ-guanidinobutyrique-ureohydrolase de Penicillium roqueforti. C R Acad Sci Paris 1969; 269:2095–2098
    [Google Scholar]
  17. Miersch J, Reinbothe H. Metabolism of γ- guanidinobutyric acid in fruit bodies of Panus tigrinus (FR.) sing. (Tricholomataceae). J Phytochem 1967; 6:485–493
    [Google Scholar]
  18. Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R et al. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 2014; 93:369–389 [View Article][PubMed]
    [Google Scholar]
  19. Kumar S, Saragadam T, Punekar NS. Novel route for agmatine catabolism in aspergillus niger involves 4-guanidinobutyrase. Appl Environ Microbiol 2015; 81:5593–5603 [View Article][PubMed]
    [Google Scholar]
  20. Jagmann N, Bleicher V, Busche T, Kalinowski J, Philipp B. The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. Environ Microbiol 2016; 18:3550–3564 [View Article][PubMed]
    [Google Scholar]
  21. Laube G, Bernstein HG. Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience?. Biochem J 2017; 474:2619–2640 [View Article][PubMed]
    [Google Scholar]
  22. Kato T, Kondo T, Mizuno K. Occurrence of guanidino compounds in several plants. Soil Sci Plant Nutr 1986; 32:487–491 [View Article]
    [Google Scholar]
  23. Kumar S, Punekar NS. The metabolism of 4-aminobutyrate (GABA) in fungi. Mycol Res 1997; 101:403–409 [View Article]
    [Google Scholar]
  24. Oudman I, Clark JF, Brewster LM. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review. PLoS One 2013; 8:e52879 [View Article][PubMed]
    [Google Scholar]
  25. Karamat FA, Horjus DL, Haan YC, van der Woude L, Oudman I et al. The acute effect of beta-guanidinopropionic acid versus creatine or placebo in healthy men (ABC Trial): study protocol for a randomized controlled trial. Trials 2015; 16:56 [View Article][PubMed]
    [Google Scholar]
  26. Noor S, Punekar NS. Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology 2005; 151:1409–1419 [View Article][PubMed]
    [Google Scholar]
  27. Davis BJ. Disc Electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci 1964; 121:404–427 [View Article][PubMed]
    [Google Scholar]
  28. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685 [View Article][PubMed]
    [Google Scholar]
  29. Archibald RM. Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. J Biol Chem 1944; 156:121–142
    [Google Scholar]
  30. Boyde TR, Rahmatullah M. Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 1980; 107:424–431 [View Article][PubMed]
    [Google Scholar]
  31. Ellis KJ, Morrison JF. Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 1982; 87:405–426[PubMed]
    [Google Scholar]
  32. de Freitas Silva DM, Ferraz VP, Ribeiro AM. Improved high-performance liquid chromatographic method for GABA and glutamate determination in regions of the rodent brain. J Neurosci Methods 2009; 177:289–293 [View Article][PubMed]
    [Google Scholar]
  33. Saragadam T, Punekar NS. Novel route for agmatine catabolism in aspergillus niger: 4 guanidinobutyrase assay. In Alcázar R, Tiburcio A. (editors) Polyamines. Methods in Molecular Biology vol. 1694 New York, NY: Humana Press; 2018 pp. 163–172
    [Google Scholar]
  34. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254 [View Article][PubMed]
    [Google Scholar]
  35. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:45e–45 [View Article][PubMed]
    [Google Scholar]
  36. Pradeep MR, Narasimha G. Utilization of pea seed husk as a substrate for cellulose production by mutant Aspergillus niger. Insight Biotech 2011; 1:17–22
    [Google Scholar]
  37. Simpson IN, Caten CE. Induced quantitative variation for penicillin titre in clonal populations of Aspergillus nidulans. J Gen Microbiol 1979; 110:1–12 [View Article][PubMed]
    [Google Scholar]
  38. Ahn HJ, Kim KH, Lee J, Ha JY, Lee HH et al. Crystal structure of agmatinase reveals structural conservation and inhibition mechanism of the ureohydrolase superfamily. J Biol Chem 2004; 279:50505–50513 [View Article][PubMed]
    [Google Scholar]
  39. di Costanzo L, Sabio G, Mora A, Rodriguez PC, Ochoa AC et al. Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proc Natl Acad Sci USA 2005; 102:13058–13063 [View Article][PubMed]
    [Google Scholar]
  40. Kanyo ZF, Scolnick LR, Ash DE, Christianson DW. Structure of a unique binuclear manganese cluster in arginase. Nature 1996; 383:554–557 [View Article][PubMed]
    [Google Scholar]
  41. Keni S, Punekar NS. Contribution of arginase to manganese metabolism of Aspergillus niger. Biometals 2016; 29:95–106 [View Article][PubMed]
    [Google Scholar]
  42. Gomez-Ortiz M, Gomis-Rüth FX, Huber R, Avilés FX. Inhibition of carboxypeptidase A by excess zinc: analysis of the structural determinants by X-ray crystallography. FEBS Lett 1997; 400:336–340 [View Article][PubMed]
    [Google Scholar]
  43. Foster AW, Osman D, Robinson NJ. Metal preferences and metallation. J Biol Chem 2014; 289:28095–28103 [View Article][PubMed]
    [Google Scholar]
  44. Dave K, Ahuja M, Jayashri TN, Sirola RB, Punekar NS. A novel selectable marker based on Aspergillus niger arginase expression. Enzyme Microb Technol 2012; 51:53–58 [View Article][PubMed]
    [Google Scholar]
  45. Whitney PA, Magasanik B. The induction of arginase in Saccharomyces cerevisiae. J Biol Chem 1973; 248:6197–6202[PubMed]
    [Google Scholar]
  46. Nakada Y, Itoh Y. Pseudomonas aeruginosa PAO1 genes for 3-guanidinopropionate and 4-guanidinobutyrate utilization may be derived from a common ancestor. Microbiology 2005; 151:4055–4062 [View Article][PubMed]
    [Google Scholar]
  47. Yorifuji T, Shiritani Y, Eguchi S, Yonaha K. Taurocyamine-utilizing mutants from a wild-type strain of Pseudomonas. J Appl Biochem 1983; 5:375–378[PubMed]
    [Google Scholar]
  48. Yorifuji T, Sawada K, Tokuda C. Taurocyamine-utilizing mutant of Pseudomonas aeruginosa with altered induction of 3-guanidinopropionate amidinohydrolase. Agric Biol Chem 1986; 50:3077–3082 [View Article]
    [Google Scholar]
  49. López V, Alarcón R, Orellana MS, Enríquez P, Uribe E et al. Insights into the interaction of human arginase II with substrate and manganese ions by site-directed mutagenesis and kinetic studies. Alteration of substrate specificity by replacement of Asn149 with Asp. FEBS J 2005; 272:4540–4548 [View Article][PubMed]
    [Google Scholar]
  50. Alarcón R, Orellana MS, Neira B, Uribe E, García JR et al. Mutational analysis of substrate recognition by human arginase type I-agmatinase activity of the N130D variant. FEBS J 2006; 273:5625–5631 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000782
Loading
/content/journal/micro/10.1099/mic.0.000782
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error